
0-A167 811 DESIGN AND SIMULATION OF AN ULTRA RELIABLE FAULT /
PSGAUTSCOLMNEECAVKSULCMATOLERANT COMPUTING SYSTEM VOTER AND INTERSTAGE(U) NAVfkL

UNCLASSIFIED F/G 9/2NL

EhmhEEEohmhmhE
EohEohEEmhhhEE
EohhEEEEEmhEEE
iEohEEEEEmhosE

EEEmmhEmhEEEEI

LAJ 1&28

IIID- 53L 11116 1
MICROCnv ON TEST CHART

NATIONAL UREAU 0 STANDAROS- 93-A

J,, r , ,,.,- .-

NAVAL POSTGRADUATE SCHOOL
Monterey, California

I

DTIC
E~LECTE

MAY 0O8 WoD

THESIS
DESIGN AND SIMULATION OF AN ULTRA

RELIABLE FAULT TOLERANT COMPUTING SYSTEM
VOTER AND INTERSTAGE

by

Virgil K. Spurlock

March 1986
LJ..J

LA. Thesis Advisor: L. W. Abbott

. Approved for public release; distribution is unlimited.

86 5 7 02-
- ."'m ",, " r",e ~ ~ " .' -, .. •,,. % ", • '. ' . •; ,, -, -, . .,, ,, -, . '

SECURITY CLASSIFICATION OF THIS PAGIE

REPORT DOCUMENTATION PAGE
Ia. REPORT SECURITY CLASSIFICATION 1b. RESTRICTIVE MARKINGS

UNCLASSIFIED_____________ _____

2a. SECURITY CLASSIFICATION AUTHORITY 3. DISTRIBUTION IAVAILABILITY OF REPORT Approved for
2b.DECASIHCTIN IDOWGRDIN SHEDLEpublic release; distribution is
2b.DECASSrICTIO/DWNGADIG SHEDLEunlimited.

4 PERFORMING ORGANIZATION REPORT NUMBER(S) S. MONITORING ORGANIZATION REPORT NUMBER(S)

6a. NAME OF PERFORMING ORGANIZATION 6b. OFFICE SYMBOL 7a. NAME OF MONITORING ORGANIZATION
Naval Postgraduate Scol (If apphable) Naval Postgraduatea School

1 62 _

6c. ADDRESS (City, State, and ZIPCode) 7b. ADDRESS (City, State, and ZIP Code)
Monterey, California 93943-5000 Monterey, California 93943-5000

8a. NAME OF FUNDING /SPONSORING 8 b. OFFICE SYMBOL 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER
ORGANIZATION .j(if aplirable)

8C. ADORE SS (City, State, and ZIP Code) 10. SOURCE OF FUNDING NUMBERS
PROGRAM IPROJECT ITASK I WORK UNIT
ELEMENT NO. NO. NO. ACCESSION NO.

I1I TITLE (Includet Security Classification)
DESIGN AND SIMULATION OF AN ULTRA RELIABLE FAULT TOLERANT COMPUTING
SYSTEM VOTER AND INTERSTAGE

12 PERSONAL AUTHOR(S)
Virgil K. Spurlocic
13a TYPE OF REPORT 113b. TIME COVERED 114 DATE OF REPORT (Year, Month, Day) 5t PAGE COUNT
Master's Thesis IFROM TO _ __I86 March 185
16 SUPPLEMENTARY NOTATION

7 COSATI CODES 18I. SUBJECT TERMS (Continue on reverse if necessary and identify by block number)

FiELD GROUP SUB-GROUP Fault Tolerant Computing

9 AB8STRACT (Continue on reverse if necessary and identify by block number)
'*fhe purpose of this thesis was to design a portion of the hardcore for

an ultra reliable fault tolerant computing network. The design focused
on the interstage, the midvalue voter, and the interface to the CPU. The
design also investigated the use of the custom slave processor mode of
the National Semiconductor 32016-10 CPU as the interface to tfle -interstage.
The primary focus of the design was reliability. Therefore the number of
gates used was minimized as much as possible. Finally, the entire design
was constructed ifidtested 6i-n--he&V~ii3d--Lo-g-ic-Tnc 7SCALJ-fystreM cdfputer
aided design (CAD) workstation. Effectiveness of the CAD system for large
designs was also studied.

20 D'STMOIUTION / AVAILABILITY OF ABSTRACT 21 4TCASffY.C~ASSIFICATION
t uNCLASS-FIEO/UNLIMITEO 03 SAME AS RPT. 0 DTIC USERS E

2a NAME OF AtESPONS11BLE INDIVIDUAL 22b TELEPHONE (include Area Code) 22c. OFFICE SYMBOL
Prof L. W. Abbott (408)646-2379 1 62At

00 FORM 1473,84 MAR 83 APR edition may be used until exhausted SECURITY CLASSIFICATION OF THIS PAGE
All other editions ate obsolete.

Approved for Public Release; Distribution is Unlimited

Design and Simulation of an Ultra Reliable Fault
Tolerant Computing System Voter and Interstage

by

Virgil K. Spurlock
Captain, United States Army

B.S.E.E., University of Kentucky, 1978

Submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE IN ELECTRICAL ENGINEERING

from the

NAVAL POSTGRADUATE SCHOOL
March 1986

Author: /.' /Virgi K, Spur ock

Approved by:Aproe b: " ryWLabot Thesis Advisor

Fred W. Terman, Second Reader

Harriett B. Rigas, Chairman,
Department of Electrical and Computer Engineering

" John N. Dyer,
Dean of Science and Engineering

.2

ABSTRACT

The purpose of this thesis was to design a portion of

the hardcore for an ultra reliable fault tolerant computing

network. The design focused on the interstage, the mid-

v&lue voter, and the interface to the CPU. The design

also investigated the use of the custom slave processor mode

of the National Semiconductor 32016-10 CPU as the interface

to the interstage. The primary focus of the design was

reliability. Therefore the number of gates used was

minimized as much as possible. Finally, the entire design

was constructed and tested on the Valid Logic Inc. SCALD

system computer aided design (CAD) workstation.

Effectiveness of the CAD system for large designs was also

studied.

Accesoi For_

NTIS CRA&I
DTIC TABUnannounced

Justification

BYo.o°.e..............

Distuibution I
Availability Codes

D Avail and JorDis Spacial

all

3

3

TABLE OF CONTENTS

I. INTRODUCTION AND OVERVIEW--------------------------- 6

A. VALID INC. SCALD CAD SYSTEM-------------------- 12

B. NS32016-10 CPU----------------------------------- 14

C.. VOTER--- 15

D. INTERSTAGE--------------------------------------- 17

E. INTERSTAGE CONTROLLER--------------------------- 19

II. CUSTOM SLAVE INTERFACE------------------------------ 20

III. INTERSTAGE INSTRUCTION SET-------------------------- 30

IV. INTERSTAGE-- 37

A. SERIAL DATA INPUT------------------------------- 37

B. SERIAL DATA OUTPUT------------------------------ 44

C. 32-BIT SHIFT REGISTERS - ----------- 50'

D. INTERNAL 32-BIT BUS & TRANSCEIVERS------------ 51

E. INTERSTAGE STATUS REGISTER--------------------- 51

V. INTERSTAGE CONTROLLER------------------------------- 53

A. -DECOD ER AND-INSTRUCTION REGISTER-------------- 55

B. FSM PORTION' OF THE CONTROLLER------------------ 60

C. INITIAL STARTUP/RESET--------------------------- 63

D. INSTRUCTION #000-------------------------------- 65

E. INSTRUCTION #001-------------------------------- 67

F. INSTRUCTION- *010-------------------------------- 68

G. INSTRUCTION #011-------------------------------- 69

H. INSTRUCTION #100-------------------------------- 77

4

I. INSTRUCTION #101 --------------- 77

J. INSTRUCTION #110 --------------- 80

K. INSTRUCTION #111-------------------------------- 80

L. SERIAL TRANSFER IN FROM EXTERNAL SOURCES -- 80

VI. VOTER--- 86

A. INTEGER VOTE------------------------------------- 86

B. ALTERNATE VOTER--------------------------------- 102

C. FLOATING POINT VOTE---------------------------- 104

VII. SUMMARY AND CONCLUSIONS----------------------------- 107

A. SUMMARY-- 107

B. CONCLUSIONS -------------------------------------- 111

APPENDIX A (SCALD APPLICATION NOTES)--------------------- 114

APPENDIX B (QUINE-MCCLUSKEY COMPUTER ALGORITHM)--------- 119

APPENDIX C (PROM MEMORY CONTENTS)------------------------- 149

APPENDIX D (SCALD CAD SCRIPT FILES)---------------------- 162

LIST OF REFERENCES--- 182

BIBLIOGRAPHY--- 183

INITIAL DISTRIBUTION LIST---------------------------------- 184

A 5

I. INTRODUCTION AND OVERVIEW

Increasingly computers are being used to monitor and

operate systems utilizing digital controls in which a

failure (actuator, sensor, bus, or computer) can have

catastrophic and sometimes life threatening results.

Failures generally have two sources: 1) random failures

such as manufacturing defects and normal wear-out and 2)

physical damage such as vibration and battle damage. Fault

tolerant computing provides the systems that recognize and

adapt to these failures.

- Several examples emphasize the need for fault tolerant

computing. Studies [Ref. 11 have shown that commercial

passenger jets can carry a larger payload and be more fuel

efficient if the structures are aerodynamically redesigned

to reduce drag. However, the new structures also reduce or

eliminate the inherent static stability of the airframe.

Computers and digital controls are required to restore

stability. A computer failure could leave a pilot with an

airplane that cannot be controlled.

In military aviation, computers control a myriad of

operations in fighter aircraft that overwhelm a pilot's

capabilities. Computer failure can degrade vital flight

characteristics, target acquisition, and fire control

systems. Physical battle damage to the aircraft increases

6

the overall probability of computer failure. Computer

failure can mean degradation or loss of mission capability.

Many of the attributes required by digital computers in

aircraft extend to spacecraft. Rapid and precise orbital

calculations, control of precision thruster and booster

firings for accurate orbital injection and attitude control,

and monitoring of life support systems are a few examples.

Again, failure of the computer system can be catastrophic.

The goal of fault tolerant computing systems is to

prevent a single point failure from disabling an entire

system. Fault tolerant computing systems provide

redundant components and an interconnection network that

connects redundant fault tolerant computers with an array of

actuators and sensors. Fault tolerant design also provides

the capability to identify, isolate, and remove a bad

component from the system in a transparent and non-

disruptive manner.

Systems can be made more reliable by adding redundant

sensors, actuators, data links and computers. The fault

tolerant system must monitor these redundant components,

decide if a failure has occurred, switch to another

component, and periodically check the failed component to

see if it has somehow become operational again.

A tremendous amount of research has been conducted in

fault tolerant computing. bf particular concern to this

7

thesis is the work conducted at the NASA Ames Research

Center, Dryden Flight Reseach Facility on the Dispersed

Sensor Processor Mesh (DSPM) [Refs. 2,3] and the research

(Ref. 4] of Professor Larry Abbott (Naval Postgraduate

School) on an ultra-reliable fault tolerant network.

One fault tolerant network, a basic hybrid redundancy

(BHR) organization proposed by Siewiorek [Ref. 5], uses

five as the optimal number of computers with three active

and two spare computers (Figure 1-1). The rotary

multiplexer activates three computers, the other two being

spare or failed. Through the multiplexer, three separate

data streams are sent to an voter which rejects a value when

it does not match the other two. This basic hybrid

redundancy system requires lock-step synchronization and a

bit by bit comparison of data. The voter and multiplexer

must be as simple and reliable as possible since a failure

in either brings down the entire system.

The BHR, with identity comparisons and lock-step

synchronization cannot address unsynchronized external

clocks or N-version programming. N-version programming is a

software technique in which different languages or

algorithms compute the same function. With only one

algorithm, a software error and it's resulting output error

could go undetected. Therefore, three separate algorithms,

each working the same problem should produce three identical

answers. This is not always the case as the three answers

8

... M r e. -'I

may vary slightly due to the different algorithms (i.e., in

the last few significant digits) but the differences are

insignificant. BHR identity comparison would immediately

reject the differing outputs whereas an SIR mid-value voter

would not.

CIROTARY a

VOTER 1

Figure 1-1: Basic Hybrid Redundancy

Synergistically integrated reliability (SIR) is an

advanced hybrid redundancy scheme shown in Figure 1-2. The

SIR architecture transmits data to the DSPM (based on

previous work by Smith [Ref. 61), an external communications

circular network that monitors and controls the buses

providing data to and from the SIR and the

sensors/actuators.

The SIR combines a number of reliability methods to

achieve hardware and software reliablity. The reliability.

methods include hybrid redundancy, N-version programming,

source congruent data interchanges, and hybrid redundancy

management (Ref. 41.

9

ARCHITECTURE

COMPUTER

NODE

Y_ 'One of Six
-4u Ports to DSPM1!P, Netwoirk

COMP UTER

NOE 4

Figure 1-2: SIR Architecture

The hardcore of the SIR node (Figure 1-3) consists of a

mid-value voter, an interstage, and a rotary multiplexer.

Each SIR node has a computer and a hardcore. Each node

communicates to the five identical SIR nodes.

The rotary multiplexer simply channels data from the

*node computer to the interstage and from the interstage to

the external computers. The multiplexer must handle full

duplex communications which increases its complexity

compared to the BHR, but this is more than offset since

multiplex routing is handled in software by the SIR concept.

Overall, the SIR multiplexer is significantly less complex

than the BHR multiplexer by approximately 2:1 [Ref. 4].

~10

mL

COMPUTER NODE

COMPUTER

(:A MIDVALUE ROTARY TO OTHER

TO DSPM /' -- INTER STAGE 0 MULTI-
VOTER PLEXER COMPUTERS

Figure 1-3: SIR computer node.

The voter in the SIR computes a middle value from the

three data values stored in the interstage. Two values are

provided by the rotary multiplexer from external interstages

and the third, from the DSPM, is provided through the CPU.

Because N-version programming can provide outputs whose

relative differences are insignificant, the mid-value voter

output in the SIR concept can still decide a "correct" value

whereas the identify comparison of BHR (which rejects

differing values) cannot. SIR also supports data congruency

identity comparisons.

The interstage provides full duplex data transfer as

well as data recirculation to provide data congruency. The

interstage can receive a single copy of data, triplicate it,

Ii1'% , . .-,.:-..--, ":-.., -.i' r, :.".'.,,% . ? ' ¢ ''¢"." "."- ',.","', ': : :." .:- ...,-..

and recirculate it to the other computers. The voter

serially receives data from the interstage and

simultaneously serially transmits the results back. Voted

results and values can be sent to the CPU or the results can

be routed to the external computers via two different

channels for redundancy checks.

This thesis is concerned with the hardware design of

the voter, the interstage, and interfacing the system to the

NS32016-10 CPU (Figure 1-4). Simplicity in the design is

an overriding concern since reliability is proportional to

the gate count. The secondary goal of the thesis will be to

use and evaluate the Valid Logic Inc. CAD/CAM system for

validation and simulation of the design.

A. VALID INC. SCALD COMPUTER AIDED DESIGN (CAD) SYSTEM

The interstage, voter, and CPU interface was designed

and tested using the Valid Inc. Scald CAD system. Use of

CAD tools can validate a design before breadboard

construction. Tracing errors on a breadboard can be a very

difficult, frustrating, and time consuming process. The

VALID/Scald system is used to verify the design and should

significantly reduce the inevitable troubleshooting required

during construction. Discovery of timing errors is expected

to be the most visible result.

12

-N N

H H

IIr r
Fiue14-ntrtg n N30614P

413

The experimental prototype will be built from the CAD

design. Therefore, schematics must be as accurate as

possible and the bugs and errors worked out prior to

construction of a prototype. Appendix A explains the Scald

CAD terminology used throughout this thesis.

B. NS32016-10 CENTRAL PROCESSING UNIT

The NS32016-10 CPU is a member of National

Semiconductor's 32000TM microprocessor family [Ref 71.

The CPU has the following features:

Supports a Custom Slave Processor

Operates at 10 Mhz

True 32-bit architecture

High-speed XMOSTM Technology

16-bit external bus

1.5 Watt power dissipation

The NS32201 Timing Control Unit (TCU) provides the

required two phase non-overlapping clock pulses. The

NS32016-10 also supports three slave processors: the

NS32082 Memory Management Unit (MMU); the NS32081 Floating-

Point Unit; and a Custom Slave Processor. Figure 1-5 shows

a typical system interconnection diagram for the NS 32016-10

CPU. Although the Custom Slave Processor is not shown, its

connections to the CPU are identical to the NS32081

floating point unit.

14

The Custom Slave Processor mode is used in the fault

tolerant computing system under design. It appears that

using the Custom Slave Processor mode will be faster than

using a conventional peripheral, but will require certain

tradeoffs between performance and reliability. Suitability

of the Custom Slave Processor mode will also be investigated

in this thesis.

Custom designed by the user, the Custom Slave Processor

interfaces to the CPU through predefined instruction sets

and protocols. The instruction sets are an excellent

method for passing instructions, statuses and results

between the two chips. The rigidly defined instruction

protocol al so reduces the amount of hardware in the Custom

Slave Processor. The interstage will be designed as a

Custom Slave Processor. Details are provided in Section II,

"Custom Slave Interface".

C. VOTER

The voter is a three way serial comparator Mealy finite

state machine. The first bit of three numbers (A, B, and C)

is serially input to the voter. The voter decides which of

the three is the maximum, middle, or minimum value then

serially outputs the respective bits into shift registers.

Serial voting in this manner requires 13 states.

Figure 1-6 shows the state diagram. Since 4 bits are

required for the states and there are three inputs and

15

-~~ -~ -

U a

000

IL4

11 2 0

_;i aU5

t T

Figure 1-5: System Interconnection Diagram

16

outputs, this is a seven variable problem, too large to use

a Karnaugh map for minterm reduction. A Quine-McCluskey

minterm reduction computer algorithm is required and an

algorithm was written by the author based on the techniques

outlined by Mano [Ref. 8]. The algorithm, written in BASIC,

is in Appendix B. Details of the voter design are in

Section VI, "Voter".

AeOC

C "IN A MAX

D. "ITNRSTAGX

neee d e orA the CPUA hNi

D. "ITESTAAX

The interstage is the heart of SIR the fault tolerant

system. It stores data from external interstages until
needed by the voter or the CPU. The interstage can

17

recirculate the stored data and transmit it to the external

interstages. The interstage is the direct link between the

CPU and the external network that connects all the CPU's.

The interstage receives three 32 bit numbers, one from

the CPU via the 16 bit data bus, the other two serially from

external interstages via channels B and C (refer to Figure

1-4). The 32-bit value from the CPU is parallel loaded into

the A register. The two serial inputs use a 10 MHz clock

but are not synchronized to each other or to the CPU. The

two values from channels B and C are initially serially

loaded into the B' and C' registers respectively and

eventually parallel loaded into the B and C registers (by

the VOTE command). The B' and C' registers are now able to

receive and store new data while the previous data is

manipulated. Use of the B, B', C, and C' 32-bit registers

allows full duplex serial communications with the other

interstages. Details are provided in Section IV,

"Interstage".

The interstage is designed to respond to only eight

commands, a constraint resulting from minimizing hardware in

the interstage while using the Custom Slave Processor mode.

The interstage can perform all necessary functions using

only eight commands. The cost of additional hardware in

the controller to decode and respond to more instructions

could not be justified since additional instructions are not

18

......
, ----

necessary. Details on how the instruction set was chosen is

provided in Section III, "Interstage Instruction Set". The

eight instructions for the interstage are:

1) Load WDTREG; INT or FP values

2) Load 32 bit value from CPU to A register

3) Vote

4) Load 32 bit value from A register to CPU

5) Load B register to A register

6) Load C register to A register

7) Load A register to B & C registers

8) Serially transfer B & C register data out

E. INTERSTAGE CONTROLLER

The controller interfaces between the interstage and

the CPU. The controller receives and decodes instructions

and operands from the CPU then issues control signals to

the interstage and voter. Upon completion of an

instruction, the controller signals the CPU, passes data (if

necessary) then switches to a wait state.

Timing between the CPU, the controller, and the

interstage is critical. The 10 MHz CPU passes information

to the slave during two clock cycles, Ti and T4, (200 ns

period). The interstage, on the other hand, operates

directly at 10 MHz (100 ns period). Synchronization between

the two is provided by the controller. Details are

provided in Section V, "Interstage Controller".

19

II. CUSTOM SLAVE INTERFACE

The interstage interfaces with the NS 32016-10 CPU

[Ref. 7] by operating as a custom slave processor.

The CPU recognizes three slave processor instruction sets:

floating point instructions, memory management instructions,

and the custom slave instructions. The CPU's 4-bit

configuration register (CFG) detects the presence of

specific external devices and is accessed through one

command, SETCFG, which is set by system initialization after

initial startup or RESET. The "C" bit in the CFG must be

set or else the slave instructions will trap as undefined.

A primary focus of this thesis is the use of the interstage

as an external device to the CPU by use of the custom slave

processor mode.

There are only three interfaces between the CPU and the

Custom Slave Processor (Figure 2-1). They are the 16-bit

data bus (D<15..0>), a 4 bit CPU cycle status line

(ST<3..0>), and a bi-directional data strobe called the

Slave Processor Control (SPC*). Clock and RESET signals are

generated external to the CPU and Custom Slave Processor.

Each instruction has a three byte field. The first

byte is an identification byte (ID) and the next two bytes

constitute an operation word. The ID byte is placed onto

the lower 8 bits of the data bus and has three functions:

20

1) Identifies the instruction as being for a slave

processor.

2) Specifies which Slave Processor will execute it.

3) Specifies the format of the instruction word.

F< LS..) 1 BITS X 15. . w B OCK IN

-OlV4_ B IN

INTERSTAGE
NS32016-10 CUSTOM C CLOCK IN

CPU --CS-nCHRt#NE:LC IN

ST<3..0) 4 BITS ST(3..a) CLOCK OUT

RT*.CH144S
BO*

--CMH9EL C OUT

PHI! RSET

Figure 2-1: CPU and Custom Slave Processor Interface

The Slave Processor bus cycle always takes exactly two

clock periods. The two intervals are labeled Tl and T4.

SPC* goes low during T1 and the Slave Processor latches the

status from ST<3..0>. SPC* then goes high during T4 and

data on the CPU bus is latched on the leading edge of SPC*.

Figure 2-2 shows the CPU to Slave Processor Write cycle.

Data is read to the CPU from the Slave Processor on the

leading edge of SPC* (See Figure 2-3).

21

PRIEV. CYCLET T N74 , CC"

-,I

Po II
AD-AIS C[T OUT NEXT

TLEE/5054-25
Note:

(I) fDUwe wmcatso pant at whoch M. Slave P omsor saraPle.

(2) ME", bw provided by its NS32201 TCU. tffimne ative due 0 Me fact glut no pulse ss pmellated on J'.

TM~ signels AD. M aw4 TO ao rawnewn inactmve.

Figure 2-2: CPU Write to Custom Slave Processor

22

PIVV CYCLE NEXT CYCLE

PHI I

AMDS[/ ' _./i_1R41

.-,[(2-) .. ------
8T0,-m AtLJO NEXT" STATUS

£met5 NEXT

TL/EE/5054-24
Now

(1) CPU eWaOOe OaItA & rW.

(2) Sleve Proces= san CPU Status here.
(3) 0~raM al other NS32201 TCU bus gnae reman 'ns v becaus no 9 putse ts recoved frm Oe CPU.

Figure 2-3: CPU Read from Custom Slave Processor

23

The Custom Slave Processor continuously monitors the 4-

bit ST<3..0> lines. When the Slave bit is set in the CFG

register and the CPU receives a Custom Slave Processor

instruction, it initiates the sequence shown in Table 2-1.

TABLE 2-1
CUSTOM SLAVE PROCESSOR COMMUNICATIONS PROTOCOL

Step ST<3..0> ACTION

1 ID CPU Sends ID Byte

2 OP CPU Sends Operation Word

3 OP CPU Sends Operands (B, W, D, Q)

4 - Slave Starts Execution, CPU Pre-Fetches

5 - Slave Pulses SPC* Low

6 ST CPU Reads Status Word

7 OP CPU Reads Results (if any)

Broadcast ID (ID) 1111
Transfer (Read/Write) Operand (OP): 1101
Read Status (ST): 1110

B - byte (8 bits)
W - word (16 bits)
D - doubleword (32 bits)
Q - quadword (64 bits)

In Step 1, Table 2-1, the Broadcast ID (1111) is sent

over ST<3..0> and the ID byte is transferred on the least

significant byte of the data bus (D<7..0>). All slave

processors receive and decode this byte but only the slave

24

processor selected is activated. The ID byte for the Custom

Slave Processor is:

nnnl0110

where the "nnn" denotes a particular Operation Word Format.

After sending this ID byte, the CPU is communicating only

with the Custom Slave Processor.

Table 2-2 shows the Custom Slave Instruction Protocols.

Figure 2-4 shows that the Custom Slave Processor has three

distinct formats: Format 15.0 (nnn = 000); Format 15.1

(nnn = 001); Format 15.5 (nnn = 101). A total of twenty

instructions are available if all three formats are used

(Format 15.0 provides four and Format's 15.1 and 15.5

provides eight each).

When using the Custom Slave Processor instruction set,

the designer builds the custom slave processor to interpret

the OP Code fields and the types of data transferred (byte,

word, doubleword, or quadword) to suit the design.

Referring to Table 2-2, the command CCVOci has two operands:

the first is a value to be read from the CPU and transferred

to the Custom Slave Processor; the second is the value to be

written to the CPU from the Custom Slave Processor. The

first operand is labeled "c" which means the operand can be

either a doubleword or a quadword. Operand 2, the returned

value, is an "i" which means the operand returned to the CPU

can be either a byte, word, or doubleword.

25
N

444 4 * 4 4 -- - -. - - .

TABLZ 2-2
CUSTOM SLAVE INSTRUCTION PROTOCOLS

Operand I Operand 2 Operand I Operand 2 Returned Value PSR Sits
Mnemanie Class Clan Issued Issued Type and Deat. Affected
CCALOc rmdc rmw.€ 0 c c to Op. 2 none
CCALIc reaDO rmnw.o C c to Op. 2 none
CCAI.2c read. rmw.C C e c to Op. 2 none
CCAL3c read.c rmw.c C C c to Op. 2 none
CMOVOc rsdcc wfits.c 0 N/A € to Op. 2 none
CMOV1c rsad.c WNte. a NIA ctoOp.2 none
CMOV2c reed.a wftc C WA a to Op. 2 noe
CCMPC readc readc 0 a N/A N,Z.L
CCVoi read.c wfiteJ 0 N/A Ito Op. 2 none
CcVIci readLc Wiite.i 0 N/A i to Op. 2 none
CCV2ci read.C wntei N/A Ito Op. 2 none
CCV3ic feed wnteo I N/A c to Op. 2 none
CCV400 read.D wrt.O 0 N/A 0 to Op. 2 none
CCV5Q0 reaLO Write.D 0 N/A -0 to Op. 2 none
LCSR read.0 N/A 0 N/A N/A none
SCSR N/A wnte.D N/A N/A 0 to Op. 2 none
CATSTO addr N/A 0 N/A N/A F
CATST1 addr N/A D N/A N/A F

LCRI read.O N/A 0 N/A N/A none
SCR ° wite.0 N/A N/A NIA , to Op.1 none

0 - ooule Wo

i - voe9 (,W,) ISo.F.l m0d minumami
I" - Fk l.P t e (F.LJ 900 in me

/A - No Appkme 10 mmgam

CCV5QD does not give the user any options on the data

types. It reads a quadword from Operand 1 and writes it

to the Custom Slave processor. Upon completion of the

instruction by the Custom Slave Processor, a doubleword is

written to the CPU and stored in the Operand 2 memory

address. The instruction LCSR writes the doubleword in

Operand 1 to the Slave but unlike the previous two, does not

read a value back to the CPU.

26

23 l lls 8 f 0

Operation Word ID Byte

Format 1S
(Custom Slave)

non Operatm Word Format

123 lolls i
000 gI hort x OP I

Format 10
CATSTO. -0000 LCR -0010
CATST1 -0001 SCR -0011
Trap (UND) on all oter:

l .. I I c
001 gen I en OP

~Format 11.I

CCV3 - 000 CCV2 - 100

LCSR -001 CCVI -101
CCV5 -010 SCSR •110

4 CCV4 -011 CCVo -111

23 loll iIf
101 gen I gen 2 op x €

Format 15.5

CCALO -0000 CCAL3 -1000
CMOVO -0001 Trap (UND) -1010
CCMP -0010 Trap (UND) -1011
CCAL1 -0100 CCAL2 -1100
CMOV2 --010i CMOV1 -1101
Trap (UND) -0110 Trap (UND) -1110
Trap (UND) -0111 Trap (UND) -1111
It AmI - 010,011. 100. 110,. 11
m Tro (UNO) AMwW

Note: Interstage uses Format 15.1

Figure 2-4: Custom Slave Instruction Formats

27

In Step 2, Table 2-1, the CPU sends the operation word

while applying ST<3..0> = 1101, "Transfer (Read/Write) Slave

Operand". After decoding the operation word, the Custom

Slave Processor knows the instruction and the size and

number of operands to be transferred. Internal engineering

considerations in the NS32016-10 cause the bytes on the

data bus to be swapped. That is, the lower byte, D<7..0>,

appears on pins AD<15..8> and the higher- byte, D<15..8>,

appears on pins AD<7..0>.

Status code 1101 remains on ST<3..0> while the CPU

fetches the operands and transfers them to the Custom Slave

Processor. Since the Custom Slave Processor determines the

size of the operands sent by decoding the operation word, it

can begin execution as soon as the data ha--- been received.

The CPU then holds AT*/SPC* high through a 5K pullup device,

prefetches the next instruction and waits for the Slave

Processor to signal completion by pulsing SPC* low.

The 74LS245 octal bus transceiver with tri-state

outputs (see Figure 1-2) in the interstage isolate the CPU's

bus from the Custom Slave Processor's bus. Isolation is

very important because the CPU prefetches the next

instruction concurrent with the Custom Slave Processor

instruction execution. If the buses were not isolated,

bus conflict could occur.

28

When the Custom Slave Processor has completed execution

of the instruction, it pulses SPC* low during TI. Upon

detection of the pulse, the CPU reads the status word at the

next T1 while applying status code 1110 "Read Slave Status"

on ST<3..0>. It is imperative that the "Quit" bit is not

set. If set, this indicates an error was detected by the

Slave Processor and the CPU will immediately trap to the

interrupt table. The slave processor status word format is

shown in Figure 2.5

15 5 7

800 N Z F a 0 L 0 a

Nw PSR Bit Value(s) t T
Quit: Terminates Protocols Tr-pcFPU'l -

Figure 2-5: Slave Processor Status Word Format

The final step in Table 2-1 reads data from the Slave

Processor (if dictated by the instruction) and transfers it

to its destination operand address in the CPU. Status code

1101, "Transfer Slave Operand", is applied to ST<3..0>

during the read and write process.

Upon completion of the Slave Processor protocol,

communications between the CPU and the Custom Slave are

broken. The CPU continues program execution independent of

the status of the Custom Slave. The Custom Slave remains

off the data bus and monitors the ST<3..0> status lines for

the next Send ID signal.

29

III. INTERSTAGE INSTRUCTION SET

The interstage instruction set is a subset of the

custom slave processor instruction set built into the

NS32016-10 CPU. Figure 2-4 shows the custom slave processor

instruction formats. Use of all three formats provides

twenty instructions: format 15.0 has four; format 15.1 has

eight; and format 15.3 has eight. Only eight instructions

are needed. Additional instructions increase the hardware

required for decoding and are therefore not used.

The bit ordering of each format is not consistent.

In particular the opcode for each format (which can be three

or four bits wide) is in different locations within the

byte. Since the opcode position and size is not static,

extra hardware is required for decoding.

Besides the opcode, there are other bit fields in the

16-bit instruction format. Three separate bit fields

determine the size of the transferred operands and are

outlined in Table 3-1. The remaining bit fields, "genl",

"gen2", and "short" are used for addressing within the CPU

and do not affect the interstage.

Of the three instruction formats available, format 15.1

was chosen for the interstage. Format 15.0, with four

instructions, was eliminated from consideration. Both

format 15.1 and 15.5 have eight instructions each, but the

30

opcode for format 15.1 is only three bits wide compared to

four for format 15.5. This difference saves a register in

the interstage and favors format 15.1

TABLE 3-1
OPERAND SIZES

Mnemonic Code Word Size

i 00 Byte
01 Word
10 Not Used
11 Doubleword

c 0 Quadword
1 Doubleword

x x Not Used

After every instruction, the CPU reads a status word

from the custom slave processor. None of the eight

instructions in format 15-1 affect the processor status

register. Therefore, the processor status register bits,

buffered off the bus, can be held low by grounding.

Registers are not needed to store the status bits. For the

above reasons, format 15.1 (Figure 3-1) was chosen to

provide the instruction set for the interstage.

Decoding hardware is further reduced by keeping the "i"

and "c" operand codes constant. The "i" bits are always set

at "11", doubleword, and the "i" bit is set for doubleword.

31

While this may be a little inefficient for the CPU, it does

not adversely affect the CPU or the interstage.

001 gen I gen2 Opc

Format 15.1

CC3-000 CCV2 -100

LCSA -001 CCVI -101

CC5-010 SCSA .110

operand I Operand 2 operand I operand 2 Returned Value PSR Bit%
Mnemonic Class Class Issued lssmed Type and Dest. Affectec

CCVOca read.c wnte~z c N/A I to Op. 2 none
CCVIci read.c WriteJi C N/A i to Op. 2 none

CCV2ci read~c wnite.i C N/A Ito Op. 2 none

CCV3ic reedi writexc N/A c to Op. 2 none

CC-V400 read.D write.Q D N/A 0 to Op. 2 none
CCV500 read.O wnte.D a N/A D to Op. 2 none

LCSR read.0 N/A 0 N/A N/A none
SCSR N/A Wnte.D N/A N/A 0 to Op. 2 none

Figure 3-2: Interstage 1nstruction Format and Protocol

There are several assumptions made in constructing the

instruction set for the interstage. First, not all the

capabilities provided by the NS32016-10's custom slave

processor instruction set are needed. For example, if the

instruction sends two doublewords to the interstage across

the external 16-bit bus and the interstage only needs one

doubleword, the second is ignored by the interstage.

If the CPU is expecting a word to be returned from the

interstage and the interstage does not need to pass a value,

32

the CPU will sample the 16-bit bus and latch a series of

high impedance outputs. Garbage will be stored in the

operand address, but according to National Semiconductor

applications engineering, this will not adversely affect the

CPU.

Whoever writes the software for the CPU will have to

provide dummy storage space. In certain cases there will be

operand addresses transferred to the interstage that the

interstage does not require and will ignore. In other cases

the CPU receive "garbage" from the interstage that will be

stored in operand addresses that should be ignored by the

software. The VOTE command is the only instruction that

will return an operand to the CPU.

The eight instructions used by the interstage will now

be described. Drawn from format 15.1, they satisfy the

requirements of the SIR network.

The first instruction, CCCV3ci, '000", is used to pass

the instruction to copy the contents of the A register into

the B and C registers. The doubleword written to the

interstage will be ignored. The doubleword the CPU reads

back will be "garbage". The instruction will signal the

interstage to transfer data internally only.

The second instruction, LCSR, "001", will command the

interstage to serially transfer the contents of the B and C

registers to the external interstages. LCSR passes a

33

doubleword to the interstage which is ignored. The CPU will

not read from the interstage.

Instruction three, CCV5QD, "010", will write a quadword

to the interstage and read a doubleword back. The

interstage is only concerned with reading a 16-bit value to

the watchdog timer register and a 1-bit value to indicate

whether the vote will be for an integer or an IEEE standard

floating point number [Ref. 91. Although the CPU will

expect to read a doubleword at the end of instruction

execution, the interstage will not write anything.

The fourth instruction, CCV4DQ, "011" is used to

instruct the interstage to vote the three 32-bit values

stored in the A, B, and C registers. The doubleword

transferred to the interstage is ignored. After completion

of the vote, the CPU will read a quadword. The first 32

bits transferred to the CPU will be the middle value of the

vote. The next 8 bits contain the slave status register

(SSR). The SSR contains the state of the voter (4 bits),

the state of the B and C channel timers (2 bits), and the

state of the watchdog timer (1 bit). The last bit in the

byte is not used. The final 24 bits of the quadword will

not contain any information.

The fifth instruction, CCCV2ci, "100", is used to

transfer a 32-bit value from the A register to the CPU. The

CPU will write a doubleword to the interstage (which is

34

promptly ignored). The doubleword read by the CPU will be

from the A register.

Instruction six, CCCVlci, "101", will be used to copy a

doubleword from the CPU to the A register in the interstage.

The doubleword written to the interstage will be stored in

the A register. The doubleword read by the CPU will be

meaningless.

Instruction seven, SCSR, "110", is used to pass an

instruction to the interstage. The doubleword sent to the

interstage is ignored. SCSR does not read a value from the

interstage. The interstage uses this instruction to copy

the contents of the C register into the A register.

The final instruction, CCCV0ci, "111", is also used to

pass an instruction: copy the contents of the B register

into the A register. The doublewords transferred and

received are mutually ignored.

The interstage instruction set and the custom slave

processor instructions they are derived from are shown in

Table 3-2.

35

TABLE 3-2

INTERSTAGE INSTRUCTION SET

CPU INTERSTAGE

OPCODE INSTRUCTION INSTRUCTION

000 CCCV3ci A - B,C

001 LICSR Serial Out

010 CCV5QD Load WDT Reg, FP/INT Vote

Oi1 CCV4DQ Vote

100 CCCV2ci A -*CPU

101 CCCVlci CPU - A

110 SCSR C -- A

il1 CCCV~ci B -.A

c = 1, doubleword

i = 11, doubleword

36

IV. INTERSTAGE

The interstage is the heart of the fault tolerant

computing network. It provides the link between the CPU and

two of the external channels in the SIR network. The

interstage contains five 32-bit shift registers, four

timer/counters, and utilizes a 32-bit internal bus. The

interstage interfaces with two external serial input data

lines and their respective clock signals. It further

provides two output serial data lines and a clock. The

interstage interfaces with the mid-value voter and receives

instruction decoding and control signals from four 2Kx8 PROM

controllers. The hierarchial interstage schematic, including

the voter, is shown in Figures 4-1, 4-2, and 4-3.

A network to switch between integer and floating point

representations while performing midvalue votes was part of

the original design specification but the concept could not

be realized because the LSTTL gates available in the SCALD

CAD system were too slow for a 10 MHz clock. Section VI,

"Voter", has the details.

A. 32-BIT SHIFT REGISTERS
-=b

The five 32-bit shift registers (Figure 4-4a) are

labeled as A, B, B', C, and C'. Four LS299 8-bit Universal

Shift/Storage Registers with Tri-state Outputs are used to

37

in
U))L

iin
A

A

A

Fiur 41 Itestg Cntole, SR adBu Bffr

~"38

'in

z A

"-44!

-~ * *0

'.4 .- in

TT- TT- T

~ '.go

19

I-0
mu WZ5~SJ.5~U

* Figure 4-2: Interstage -Voter, GenCounter, and Registers

39 **

VT

Figure 4-3: Interstage - Serial input Counters

40

.1

A f

SLIN'X

> SROUT'.I

-SIN S1 Sm0 D<31..13) SIN
-Swr ROU

Ip I .

a)TI-E HIERACHI BO1Y81-m
CREATED FOR THE 32-BIT "

SHIFT REGISTERS

D(7. . 0

D(3.. 15>\

b) S1 HMTIC OF THE

32-BIT SHIFT REGISTER

IN IN I GH - 9I
L &SLOUT\16

SLOUT SB <- SHIFT L.FT LSB SOUTI I
SI Sa

C) DLOO(DIAGRAM a a HOLD
SHOWING SELECT 0 1 SHIFT RIGHT
LINE ENCODING 1 0 SHIFT LEFT

I I LOAD
Figure 4-4: 32-bit Universal Shift/Storage Register

41

implement each 32-bit shift register (Figure 4-1b). Each

register is connected to the interstage's 32-bit internal

bus for parallel data transfers. The registers use two

control lines: clear (CLR*) and output enable (OE*); and two

select lines. The two select lines (Sl and SO, Figure 4-4c)

can select shift left, shift right, parallel load, or hold.

The A register can be loaded in four separate ways (3

parallel, 1 serial). The first is by copying a doubleword

from the CPU. The A register is the only register that

directly transfers data to or from the CPU. The second, a

serial transfer, occurs during a mid-value vote (instruction

011). Data is simultaneously serially shifted out to the

voter and the result of the vote is serially shifted back.

The final two load operations are parallel: copy B register

to A register (instruction 111) and copy C register to A

register (instruction 110).

The B and C registers have two major functions. They

serially transfer data out to the external interstages and

store operands and results of mid-value voting. Three

methods are used to load the B and C registers. The first

is parallel loading from the prime registers (B' -B and C'

- C). This is the first step of the "VOTE" instruction. The

second is by instruction 000, which takes the contents of

the A register and parallel loads it to both the B and C

registers. The final method is a serial shift-left load

42

from the output of the mid-value voter (instruction 011).

Storing the results of the vote is identical to the

procedure used by the A register.

The B' and C' registers receive serial input data from

external interstages (see Section III B, "Serial Data

Input"). Once the data has been received, it is held until

the VOTE command is received. The data is then parallel

loaded to the B and C registers.

The mid-value voter works directly with the A, B, and C

registers. The three operands stored in the registers are

serially transferred bit by bit to the mid-value voter and

compared. The voted values (mid, max, min) are directed to

the A, B and C registers respectively and stored. Each

"shift left out" and "shift left in" operation takes place

during one clock cycle. The bit by bit voter sequence is

very similar to the actions of a ring counter. In the

voter's case, one bit from each of the three shift registers

are compared and the results of the comparison are

recirculated back to the same shift registers. At the end

of 32 counts, the comparison is terminated. The mid value

is sent to the A register since it will be either loaded

into the CPU or parallel recirculated into the B and C

registers for transmission to the external interstages.

43

B. SERIAL DATA INPUT

One of the main functions of the interstage is to

receive data from external sources, manipulate, then

subsequentially transfer the data out. Incoming serial data

is loaded into a 32-bit shift register under the control of

an 8-bit, modulo-32 counter (see Figure 4-5) and a 16-bit

counter called the Watch Dog Timer (WDT) (see Figure 4-6).

The incoming serial data is received independently from

two channels: "Channel B In" and "Channel-C In" (see Figure

4-7). The independent data streams are loaded into the B'

and C' registers while a modulo-32 counter for each channel

monitors the transfers. Two counters are required since the

two channels operate independently of each other. Each

channel has a clock provided by the sending external

interstage.

o<(3.. a>\I

-17 07-
.OCK\I -- 16 06-

> 15 05-
T" -14 04-

T -I3 03-
-2 02

LD CL 1 01LOA13*'I -- 0 I 0O0-

ENT
.R*NI EnP TCO -

LD*
CLR*

LA) SCA_.D HIERRCHIAL
0(7.. 4) \ BODY FOR 6-BIT

> COUNTER

) SCHEMATIC OF THE U-BIT COUNTER

Figure 4-5: Eight Bit Counter

44

D< _ __ _ __ _ 7.. 4),.1
6

CL 123's-2

ENT
________ ENP TCO

A) HIEPCRHIAL BODY
______FOR 16-BIT COUN4TER

45

. h , t 0-

Lin) C

There are four control signals associated with each 8-

bit mod-32 counter: CLR*, LD*, ENT and ENP. The CLR* line

is permanently set high as there is no need to clear the

counter. A preset value of "1" is loaded using the load

command.

D< 15.. a) 30-8 CLOCK ZIN

QW4I E 3 IN

I NTERSTRGEN
CUSTOM C CLOCK IN

PROCESSOR -CHANNL C IN

-P CLOCK OUT

-PANNL C CUT

PH1l RESET

Figure 4-7: Serial Input/Output to Interstage

The LD* signal has a dual function. When LD* is. low,

the counter presets a "1" as the start value for the count.

Holding LD* low provides the side benefit of placing the

counter in a wait state. Even if the counter is clocked,

the count does not advance.

When LD* is high (and ENT and ENP are high) the counter

counts. Thirty two counts later, the COUNT<5> line (bit

five of the counter) goes high and suspends the count. This

line also acts as a flag to signal that 32 bits have been

loaded into the register. The clock lines for the input

46

~ ~I

channels are held low until the external interstages are

ready to transfer data. A transfer is initiated when the

clock lines are enabled.

The ENT and ENP control lines are wired together. Both

lines must be high in order to count. An inverter and an

AND gate (Figure 4-3) disables the counter after 32 counts.

This is important since an extra clock pulse or noise spike

will cause the 32-bit register to serially load extra bits

and store an inaccurate value into the register.

Serial loading the B' and C' registers requires the

incoming clock line be held low until the external device is

ready to transfer data. The first bit must be stable on the

data line when the first rising clock edge is received. This

stability is guaranteed since the other interstages are

identical to the one in this thesis.

There is no synchronization between the two input

channels. Conceivably, any combination of clock lines or

channels could fail. The watch dog timer (WDT) provides a

measure of control over the two incoming clocks (see Figure

4-3). The WDT starts counting immediately after system

reset and continues counting until suspended (or reset at

the end of a vote).

If one or both clocks fail to start in a predetermined

amount of time, the clock failure is recognized as a failure

by that channel. This failure is noted since the WDTSTOP

47

* -)Z)

signal will go low and the counting operations of the BCOUNT

and CCOUNT counters will be suspended. WDTCOUNT<15>,

BCOUNT<5>, and CCOUNT<5> are sent to the interstage slave

status register (SSR). The CPU checks the SSR at the end of

a VOTE to determine the status of the data loaded into the

B' and C' registers. Table 4-1 shows how the CPU would

decode these bits.

The last two bits shown in Table 4-1 are the most

important since the bits show whether a register is loaded

or not. If both registers are loaded, it does not make a

difference whether the window is open or closed. If one or

both registers fail to load and the window is closed, this

could indicate that an external circuit has failed. The

CPU, -by keeping track of which channel continually fails

could eventually determine that something associated with

the channel has failed. A vote should not begin until the

window has closed. An interrupt or software timer should be

used to ensure this.

If the input data is corrupted, this will be detected

during the midvalue vote since the three 32-bit values will

not be equal. The CPU, by reading and decoding the SSR, can

determine which of the three channels contains the corrupted

value.

The two interstage controller signal lines that control

the serial data input are LDBCTIMER* (load the B and C

registers) and LDWDT* (load the watchdog timer). When the

48

fault tolerant computer is initially turned on or reset,

LDBCTIMER* is held low (wait state) and the modulo-32

counters are loaded with their start values of "1". By

immediately enabling the counters, data can be loaded from

the input channels independent of command or activity by the

CPU or the interstage.

TABLE 4-1
SLAVE STATUS REGISTER DECODING

WDTCOUNT<15>

BCOUNT<5>

CCOUNT<5>

0 0 0 Neither B' or C' loaded (Window open)

0 0 1 Only C' loaded (Window open)

0 1 0 Only C' loaded (Window open)

0 1 1 Both registers loaded (Window open)

1 0 0 Neither B' or C' loaded (Window closed)

1 0 1 Only C' loaded (Window closed)

1 1 0 Only B' loaded (Window closed)

1 1 1 Both registers loaded (Window closed)

LDWDT* is activated only by a CPU command. This

instruction loads the watch dog register with its initial

count. If no value is received from the CPU, the WDT uses

the reset value of "0000" as an initial count. Upon

completion of every serial-in transfer, the WDT is reset to

49

A4

the inital count stored in the WDT register. Note that the

loaded value is not the absolute count, but a relative

count. When WDTCOUNT<15> goes high, it acts as a flag to

indicate that the window to input serial data has closed.

If a count of 50, 5 microseconds, is desired, 32,768 (215 -

50) is loaded into the register. The WDT will continue

using the same initial count value until reprogrammed by the

CPU or the interstage is reset. It is imperative that the

WDT register be loaded after every manual reset.

C. SERIAL DATA OUTPUT

Data is serially transferred out from the B and C

registers (not to be confused with the B' and C' registers).

The three control signals involved are the two bit select

lines for each register and ENCLKOUT (enable clock out). The

data bits are counted by a general timer, GENTIMER, which

is identical to the 8-bit modulo-32 counters explained

previously (see Figure 4-5).

Serial output transfer of data can be performed only

under command of the CPU (instruction 001). The clock for

the output channel is kept low by an AND gate and the

control line ENCLKOUT. When the data is ready to be

transferred out, ENCLKOUT goes high and enables the clock.

The BOUT and COUT (serial data output) lines are always

attached to the (shift left) outputs of the 32-bit

registers.

50

6 MN..621 - ' 'o- . -' --. -Z .,.'Z . .% .% -.- - . ,j . .- -.. % - .,.• .

D. INTERNAL 32 BIT BUS & BIDIRECTIONAL BUFFERS

The interstage utilizes a 32-bit internal bus to

transfer information among the five 32-bit registers. This

32-bit internal bus interfaces with the CPU's 16-bit bus

through 32 74LS245's, Octal Bus Transceivers with tri-state

outputs (Figure 4-1). The bidirectional bus has two control

lines, EN and DIR (enable and direction, Table 4-3).

During normal CPU operations, the 74LS245's are in the

isolate condition buffering the interstage off the CPU's 16-

bit external address/data bus. By dividing the 32 74LS245's

into two sets of 16 each (16-bit select high and 16-bit

select low), the transceivers act as a multiplexer

converting the interstage's 32-bit bus format to the CPU's

16-bit external bus format.

TABLE 4-3
CONTROL SIGNALS FOR INTERSTAGE BI-DIRECTIONAL BUFFERS

EN DIR

0 0 A- B

0 1 B- A
1 X ISOLATE

E. INTERSTAGE SLAVE STATUS REGISTER (SSR)

The SSR (see Figure 4-1) has seven data bits, each

being the output of a register in the interstage. As such,

the SSR is not an independent register. The control signal

51

BUFSSR (buffer for the slave status register) controls seven

LS125 buffers. The buffers are enabled onto the high byte

of the CPU's 16-bit external bus only when the interstage is

passing status to the CPU during the VOTE command.

The four lo.wer bits of the SSR are the present state,

PS<3..0>, output lines from the voter (see Figure 4-6). The

CPU can decode these bits and determine which of the 13

states the voter was in at the completion of a VOTE.

The next two bits are the BCOUNT<5> and CCONT<5> lines

from the BCOUNT and CCOUNT modulo-32 counters. The final

bit is the COUNT<15> line from the WDT. By decoding the

three counter bits, the CPU can determine if one, both, or

neither of the external channels were loaded correctly and

within the WDT's window.

52 2I.

- - rvrv..gr~v ,ye-. . - V r , '-i t rrr A, ;. -"9r W .X KrV MLJ u. -.. . .. C T 7 J :' fl' F -r

V. INTERSTAGE CONTROLLER

The interstage controller is the link between the CPU

and the interstage. The controller receives instructions

from the CPU and produces the control signals needed by the

interstage to perform the required operation.

The controller consists of decoding logic, instruction

registers and a 2K x 32 PROM. Appendix C contains the PROM

memory contents. The actual chip count is provided in Table

5-1. The scald hierarchial body and the CPU interface of

the controller is shown in Figure 5-1. The controller

remains in a WAIT state until given a command by the CPU.

TABLE 5-1

INTERSTAGE CONTROLLER HARDWARE REQUIREMENTS

Gates Chips Chip Description

9 2 LS175 Quad D flipflops
2 1 LS74 Dual D flipflops
4 4 27S291 2K x 8 PROM
9 2 LS04 Hex Inverters
2 1 LS11 Quad 3-Input AND
1 1 LS30 8-Input NAND
2 1 LS20 Dual 4-Input NAND
1 1 LS02 Dual 2-Input NOR

When the system is initially turned on or reset, the

following actions occur:

* (1) clears the instruction register

(2) clears the FSM state registers

(3) clears the SLAVEON and READY registers

53

31 LDGENTIMER*
30 UFSSR*

29

28

NB

S p(a1)25

25 ENA*
24 SAHIcI>

SOP 23SAHIM0

CONTROLLER 22 5AO(I)

z Z(1., 4 -] 21 ALO0)

SUc1.. is-0 z 2 3 -..1 6 1 EB*

4ST(3..0) z1 5 ... 8 ____________ SBM1
ST3-O Z7 4 Z ?..4 17 ENC*

Z3-0 - Z<..O>SC<1)

PD C) AD .. ADD 1 - 8 AD 10 . . 8

GENCLIT(5> STOPCOt.NT ADD5.... - 'D(..> 1 CLRSLONREG*
ADD ADC3.* ~ 13 LDBCTIMER*

12. LDW4DTPEG

PH-IL CL* 11LDWDT*
10 ENCLKCVUT

5IJ 1 7ENBUSHIU)

EN USLO<I)
PHIL iC 0-40 __CL*(is6 BSO

RESET* CLRSLONREG* 5 LPVESPC*

SLVTOCPUSPC* LVSC

Figure 5-1: Interstage Controller and CPU Interface

54

The controller then continuously cycles through a wait

state, AD<10..O> = 000h (h-hex). The wait state performs

the following:

(1) buffers the interstage off the CPU's external bus

(2) loads the three modulo-32 timers

(3) allows the B' and C' registers to shift left in

(4) enables the watchdog timer

The wait state sets the B' and C' timers so that serial data

can be loaded from external interstages independent of CPU

control. It is important to remember that the Watchdog

timer register must be loaded (instruction 010) after each

reset for the relative count to be meaningful.

The controller interfaces with the CPU by monitoring

the 4-bit status lines ST<3..0>, the 16-bit address/data

bus, and the Slave Processor Control line (SPC*). The

controller uses a clock, PHI1, synchronized with the PHIl

used by the CPU. The RESET signal should be the same signal

used to reset the CPU and the entire system.

A. DECODER AND INSTRUCTION REGISTER

The controller remains in the wait state until

activated by the CPU. The CPU selects the interstage by

simultaneously transmitting the broadcast ID (1111) over

ST<3..0> and the appropriate ID byte over AD<7..0>. The

55

d!

*, ,.v i%~'-

controller decodes these 12 bits and the interstage is

selected if the following bits are received:

ST<3..0> A/D<7..0>

1 1 1 1 nnn 1 0 1 1 0

where nnn describes a particular operation word format.

Section III, "Interstage Instruction Set", explains why

format nnn = 001 was chosen . Therefore, the following 12-

bit sequence uniquely selects the interstage:

ST<3..0> A/D<7..0>

1 1 1 1 0 0 1 1 0 1 1 0

The decoding logic used to signal selection of the

interstage is shown in Figure 5-2. The SLAVEON register

(Figure 5-2, 131p) is set high only if the interstage is

selected by the CPU. The READY register (Figure 5-2,123p)

is set only if the SLAVEON register is set and when ST<3..0>

is equal to "1101".

The 12-bit selection sequence is decoded by the gates

shown in Figure 5-2 (130p, 134p and 156p). The output,

DSLAVE, is high only when the signal to select the

interstage is transmitted by the CPU. DSLAVE is the input

signal for the SLAVEON register.

The clock signal for the SLAVEON register, SLVCLK, is

the output of a 2-input AND gate (Figure 5-2, 158p). The

first input acts as an enable that is high only if the

56

PRIV. CYCLE NEXT CYCLE

T4 ORAT1 y O TOU NEXT

M4 I
-

ESTS [V NEXT STATUS

a) CPU Write to Slave Processor

- I Q
S I P

LNI'

SLVO A 13

b) Controller Hardware

* Figure 5-2: Selection Decoder for Interstage Controller

57

.rr. ~ T I W, tSf .,%~ r~rr W~WW 'UlMfZ~~r.r rlKfy MKN lWl'r W WWrt r - VI -V' -W , W' V n:71~ ~

output of the 4-input NAND (Figure 5-2, 134 p) is high.

Otherwise, SLVCLK is low, SLAVEON is not set and the

interstage is not selected. The other input is the clock

signal inverted.

Figure 5-2 (a) shows the timing requirments to sample

ST<3..0> and AD<15..0>. By sampling at point (2) and

holding for the remainder of the negative clock cycle,

DSLAVE will be high for approximately 50 nanoseconds.

SLVCLK goes high approximately 10 nanoseconds later due to

the propagation delay of the AND gate 15 8 p and provides a

positive rising edge for the SLAVEON register. At this

point, the SLAVEON register is set indicating selection of

the interstage by the CPU for slave instructions.

The timing diagram in Figure 5-3 shows the selection

process. During the T1/T4 cycle from 400 - 600 ns, the

controller correctly decodes the data from the CPU and sets

the SLAVEON register.

The CPU sends the operation word on the next Tl/T4

cycle (600 - 800 ns). ST<3..0> transmits 1101 and the low

byte of the operation word is swapped and sent over the

address/data bus (bits 15-8 appear on A/D<15-8> and bits 7-0

appear on A/D<23-16>). This is an important sequence

since the operation word contains the instruction and will

be clocked into the 3-bit instruction register.

58

Z1 U

LOU!

el-

1-.,0) ZU 0- -

I U

11 F F 3

* ~ ~~~P(7 Z 6U I _ _ _ _ _ _ _ _ _ _

le

:'; ~A 10. . 13) 0q U4e Ow 460. S5 1 2. .0 6

Figure 5-3: Timing Diagram for Interstage Selection

59

The READY register (Figure 5-2, 123p), initially set to

zero, provides the clock signal for the instruction register

(Figure 5-2, 139 p). The instruction register is not

clocked unless the SLAVEON register is set. The READY

register changes from low to high only once during a slave

processor sequence providing a postitive edge triggered

pulse to clock in the 3-bit instruction. Figure 5-2 (a)

shows that the instruction should be clocked during T4 and

this is verified in the simulation (AD<6..4>, Figure 5-3).

The output of the instruction register provides three

bits of the address required for the Finite State Machine

portion of the the sequential controller. None of the

registers described thus far will change state until

completion of the slave cycle. At that time, they will be

cleared and will remain so until the interstage is selected

by the CPU.

B. FSM PORTION OF THE CONTROLLER

The interstage can respond to eight different commands.

Once the controller has decoded an instruction, it operates

independently of the CPU while executing the given

instruction. Once the CPU has prefetched the next

instruction, further CPU operation is suspended. Upon

completion, the controller drives SPC* low (during the Tl

cycle only) and transfers the slave processor status word

and operands back to the CPU as dictated by the instruction.

The finite state machine portion of the controller

consists of four 2K x 8 27S291 PROM's and six 74LS175 D-

flipflops (Figure 5-4). Paralleling the eleven address bits

across the four PROM's provides 32 control lines. Of the

32-bits of output, four are used as the next state inputs

for the D-flipflops. The other 28 bits are available for

use as active control lines for the interstage and are

listed in Table 5-2.

IMP 0(3±.. 24\I

2721 I 2752

114P

1 I B An CS A ca

lee

A a l".

1 1

FigureET 5-PFPrinofteCnrle

617

TABLE 5-2
32 CONTROL SIGNALS FOR THE INTERSTAGE

PROM BIT NAME DESCRIPTION

Q<31> EDGENTIMER* Load the General Timer

Q<30> BUFSSR* Enable the SSR buffers

Q<29> ENPB* Enable 32 bit output of B' reg

Q<28> ENPC* Enable 32 bit butput of C' reg

Q<27..26> SP<l..0> Select lines for B' and C' reg

Q<25> ENA* Enable 32 bit output of A reg

Q<24..23> SAHI<l..0> Select for bits 31-16 of A reg

Q<22..21> SALO<l..0> Select for bits 15-0 of A reg

Q<20> ENB* Enable 32 bit output of B reg

Q<19..18> SB<l..0> Select for B reg

Q<17> ENC* Enable 32 bit output of C reg

Q<16..15> SC<I..0> Select for C reg

MQ<14> CLRSLONREG* Clear SLAVEON reg

Q<13> LDBCTIMER* Load B & C reg timers

Q<12> LDWDTREG Load WDT reg with initial count

Q<ll> LDWDT* Load WDT with initial count

Q<10> ENCLKOUT Enable output clock (serial out)

Q<9..8> ENBUSHI<1..0> Select for bits 31-16, LS 245

Q<7..6> ENBUSLO<1..0> Select for bits 15-0, LS 245

Q<5> SLAVESPC* SPC* low (signal to CPU)

Q<4> CLRVOTER* Clear the voter state registers

Q<3..O>Inputs to State registers

62

Execution of each of the eight instructions requires

sequential manipulation of the 28 control lines. The PROM

is programmed to provide the control line values. The

eleven address bits are described in Table 5-3.

TABLE 5-3
ADDRESS BITS FOR PROM CONTROLLER

AD<10> Output of SLAVEON register (high means begin)

AD<9> Output of READY register

AD<8> Stopcount (flag from mod-32 GENTIMER counter)

AD<7> Not used (Set to zero)

AD<6..4> Output of 3-bit instruction register

AD<3..0> Present state for FSM

C. INITIAL STARTUP/RESET

A RESET, regardless of how initiated, will reset all

the registers (with the exception of the WDT register) and

load the timers with their initial value. The B' and C'

shift register's select lines will be set to shift left.

All other components are either disabled or placed in a

hold state. These actions are accomplished during the wait

state (Address 000h).

The controller will remain in the wait state until the

interstage is selected by the CPU. For example, assume

instruction "101" is sent to the interstage. When selected,

AD<l0> goes high and the address changes to 400h. The PROM

63

outputs remain the same. The READY register is set

approximately 100 nanoseconds later and AD<9> goes high.

Thirty nanoseconds later, the 3-bit instruction is clocked

into the instruction register and the starting address for

the instruction, 650h, is presented to the PROM.

Note that AD<9> goes high upon the rising edge of PHIl.

Since READY is the clock for the instruction register, the

instruction bits change approximately 25-35 ns after READY

is set. This creates a race condition where AD<l..0>

transitions from 000h - 400h - 600h - 650h. The race state

is 600h. A race state appears in all eight instructions and

is accounted for in the PROM with extra transition states.

An alternate method to eliminate the race would be to use

more registers to ensure that the address bits to the PROM

all changed simultaneously.

The FSM cycles through its programmed states and

produces the required control signals. When the instruction

is complete, Q<5> (SLAVESPC*) and/or Q<14> (CLRSLONREG*) are

pulsed low. When Q<5> goes to zero SPC* is driven low

through a buffer (see Figure 5-5). Driving SPC* low signals

the CPU that the interstage has completed the instruction.

Q<5> and Q<14> pulse low simultaneously except after the

VOTE command because the VOTE command passes operands to the

CPU. Driving Q<14> low clears all registers in the

controller and places the controller into the wait state.

64

SPC* 0 TO CONTROLLER

Figure 5-5: Network to Signal CPU that Instruction has
been Completed

D. LOAD A REG -oB,C REG (INSTRUCTION 000)

Loading the contents of the A register into the B and C

register takes only three clock cycles. The 74LS245 buffers

isolate the interstage from the CPU since no information is

transferred. The interstage ignores the doubleword the CPU

is writing. ENA* is set low and the select lines for the B

and C registers are set to "11", parallel load. The

instruction is then finished. SPC* is pulsed low,- and the

interstage returns to a wait state.

Figure 5-8 is the timing diagram from the computer

simulation. Instruction execution lasts from approximately

2000 ns to 2300 ns. At 1220 ns, the A register is enabled

and its contents, 01234567h, can be read from INBUS<31..0>.

This operation is independent of the instruction and is

performed only to show the contents of the previously loaded

A register. After execution of the instruction, the B

register is artificially enabled (2440 ns) and the C

register is enabled (2540 ns) to show their contents. Both

65

z.Mj LJL1 Lj~
sum(&. 4) Z. Uj

OM 11L b ZP ama]II ___m
Z'31. .16) IiL F 'M271212L 7AL2 W2-,F 1

Z(15.. 0,U)iGA AII 21A A

0) Z U I F

_ _I

CHIPTO UI L

ENC*ZUI

CLZLNG Z.U~ 1021 1 02 02

15)Z,~~~- Ua 01 lm02 D2

registers contain 01234567h and therefore validate the

instruction. Script files are used by the SCALD system to

insert a series of logical values into the circuit under

test and generate outputs over a specified period of

time. The script file used for the simulation,

"in0sim.dat", is in Appendix D.

After the instruction is completed, the controller

returns to the wait state 000h at 2220 ns. However, there

is another race condition when transitioning from the last

command address to the wait state. Since the SLAVEON and

instruction register clears a few nanoseconds before the

state register, a race condition is created. This race

condition occurs at the end of each instruction for all

eight instructions and extra transition states in the PROM

account for it. As stated before, an alternate method to

eliminate the race is to add registers.

E. SERIALLY TRANSFER OUT B,C REG (INSTRUCTION 001)
This instruction was to have enabled the output clock

(Q<10>, ENCLKOUT) and serially transferred the contents of

the B and C registers to the external interstages. While

writing and simulating the VOTE instruction (011) and the

controller commands for autonomous serial loading of the B'

and C' registers, timing problems developed with the general

modulo-32 counter (GENTIMER). While the VOTE and serial

67

loading instructions did work, the addition of a third

function to the general timer disrupted the timing.

The addition of multiple enables to allow the GENTIMER

to perform three functions could not be accomplished in a

simple manner. The only way to make this instruction work

is to add two more mod-32 counters. This expansion also

requires additional control lines. The hardware additions

include four 74LS161 counters, another PROM and several

gates for an enable/disable network.

At this point it became obvious that the interstage as

originally conceived was becoming too large and therefore

was affecting it's reliability. The hardware expansion

required to make the command work was not implemented.

Therefore, there was no need to write and simulate this

simple controller sequence (enable the output clock and

shift out). The discovery of the timing problem and its

effect on the interstage is discussed further in Section

VII, "Summary and Conclusions"

4 F. LOAD WDT / FP VS. INTEGER VOTE (INSTRUCTION 010)

Loading a start count for the watchdog timer should be

the first command executed after any reset. Otherwise the

watchdog counter starts from zero. Instruction 010h

transfers a doubleword to the interstage. The lower word

contains the value to be loaded into the watchdog timer

register. The lower bit of the upper word contains a one

68

bit code for integer vote or floating point vote. As

explained in Section VI, "Voter", the floating point vote

could not be realized using the LSTTL components available

in the SCALD CAD machine's library. Therefore, no use is

made of the higher word transferred from the CPU.

The simulation for loading the WDT register is shown in

Figure 5-7. The instruction has eight states. From 1860 ns

to 2000 ns, the lower word of the interstage's 32-bit

internal bus is enabled and the load watchdog timer register

signal, LDWDTREG, pulses. At 2080 ns, the watchdog timer is

loaded with the new value when LDWDT* is pulsed low. From

2150 ns forward, the watchdog timer will start counting at

the loaded value (7FC0h in this simulation). Notice that

the signal WDTCOUNT<15..0> starts counting from zero, then

jumps to 7FC~h and continues counting from there. The last

two states are not shown, but that is where Q<5> and Q<14>

pulse low and reset the controller. The script file is in

Appendix D.

G. VOTE (INSTRUCTION 011)

The vote instruction is the most complicated of the

eight. The controller first loads the contents of the B'

register to the B register and the contents of the C'

register to the C register. The A register should already

contain a value (from instruction 101). Next, under the

control of the general timer, the 32-bit serial vote of the

69

.1_1_w I I

l1inA4L .*16) Z. U I21
IPM is. 6) oiZ IIi~______1cL~IIZI

VABWS(SU . LOD5 z.UI __ _ _ __ _ _ __ _ _ __ __ __ _ _

_ _ __tw 11D11.
a(1.6ZUF~~I~ii1_____71

Z4IS.6) ZIUl I I ~ _____ _____ ____

z.41 -4 Z, _ _ _ _ _ _

,M6.4 Z. 2. .

three registers begins. After completion of the vote, the

mid value is in the A register, max in the B register, and

the min in the C register. The contents of the A register

and the slave status register (SSR) is then read by the CPU.

Figures 5-8, 5-9, 5-10, and 5-11 are the timing

diagrams for Instruction 011. Figures 5-8 and 5-9 both

start at 6100 ns and end at approximately 8340 ns. Figures

5-10 and 5-11 start at approximately 10100 ns and end at

11980 ns. The four figures must be viewed as a whole with

Figure 5-8 above Figure 5-9, Figure 5-10 above Figure 5-11,

with both pairs side by side.

For the computer simulation, the A register was

previously loaded with the value 10AASA5Ah. The B' and C'

registers were loaded from a simulated external interstage.

Their stored values are 62329697h and 6621696Bh respectively

as shown on the internal bus, INBUS<31..0> (Figure 5-8),

from 6100 - 6400 ns. The VOTE instruction is decoded at

7150 ns. INBUS<31..0> shows the B' and C' registers enabled

on the bus starting at 7300 ns. The actual voting begins at

7500 ns.

An LSTTL implementation of the voter does not work with

a 10 MHz clock. However, as pointed out in Section VI,

"Voter", STTL and FAST implementations can work at 10 MHz.

Figure 5-9, starting at 7500 ns, shows the problem. At 7500

ns, the VOTERIN<2..0> values are equal and the present state

is correct at 0000h. However, at 7600 ns, the input is 011.

71

The A value is min and the next state should be 1100 (See

Figure 6-5 and Table 6-2). The simulation shows the state

clocked to the voter registers to be 0001. This is

incorrect. The VOTEROUT<2..0> output, which should be 110,

bounces from 000 to 111 to 000, all incorrect. The

combinational logic in the voter does not have enough time

to stabilize the outputs before the voter state register is

clocked. If the clock for the system was expanded to 5 MHz,

the VOTE instruction would work. This particular timing

problem is thoroughly discussed in Section VI, "Voter". The

vote problem is a function of the voter itself and the clock

speed of the system and not with the interstage or the

interstage controller.

Even though the output of the voter is "garbage", the

controller continues. The controller remains in the 633h

address during the 32 counts of the counter. At 10580 ns,

the general counter reaches 20h. Thirty two bits have been

circulated through the voter. GENCOUNT<5> goes high, Q<5>

(the SPC* line) goes low, and the controller jumps to

address 733h from 633h. STOPCOUNT in Figure 5-4, which is

the same as GENCONT<5> in Figure 5-2 goes high. The results

of the vote, the middle value, is transferred to the CPU

(using the same sequence as instruction 100). The contents

of the SSR is written to the CPU, Q<14> (CLRSLONREG*} is

pulsed low, and the interstage resumes the wait sequence.

72

~i

" I i
i
i

U U"I

" ,[F '!
I I

L" ii:: i 4i6"1!,tI' .'l~ i ~ I

Figure 5-8: Computer Simulation for Instruction 911

73

* i3

* i

JI~.

U

il "U U ~ 1 0

I IU
~ I 0

U

U SI I
ii

I I I
I

SI ~ i
I I ja I

I I
I

U

I
S..

I U ~
I

U

q
U**9~ 26

26
.3 .3 .3 #1 .3 .3 .3 .3 .3 .3 .3 .3 .3 .3 .3 .3 .3 .3 .3 .3

5j ~ 2 1 ~ 'I 5~ * g * ~ R -

I

V Figure 5-16: Computer Simulation for Instruction 011 (Coot)

75

V.-
-~

I 1 I 1:_.=_ . .:_ .-
d ' - ' 't '

: : ' -'' ".....0

U i

* :

I0

L a
;oU

U

-U:

* :

L - - U

- . - E U

• m •

_° -° r. i

, 2 - - r-

- U
U,-

U U
- U

* ,,,,ll l! al l i U
Fiue -1 C pue SiuainfSIsrcin I(ot

H. PARALLEL TRANSFER A REG -o-CPU (INSTRUCTION 100)

This instruction transfers the contents of the A

register to the CPU. The instruction takes 15 clock cycles.

The CPU will send a doubleword operand which will be ignored

by the interstage. However, the interstage must wait for at

least eight clock cycles before it can transfer data to the

CPU. After eight cycles, Q<5> is pulsed low and during the

next two TlT4 cycles, the interstage transfers the contents

of the A register to the CPU.

Figure 5-12 shows the computer simulation. At 3400 ns,

SLVTOCPUSPC* is pulsed low signaling the CPU that the

interstage is ready to transfer data. During the T1T4

cycle from 3600 - 3800 ns, the CPU is reading the status

word. The interstage sets BUFSSR* low sending 00h as the

status word. During the next two consecutive T1/T4 cycles,

3800 - 4200 ns, the interstage 74LS245 buffers enable a

transfer to the CPU and the value in the A register,

ABCD139Fh, is visible on the MBUSHI<15..0> bus. At 4200 ns,

Q<14> pulses low and the interstage and CPU break contact.

I. LOAD CPU - A REGISTER (INSTRUCTION 101)

This is a five cycle sequence. Figure 5-13 shows the

timing diagram. After decoding the instruction, the

controller places the low word on the CPU's 16-bit external

bus during the first TI/T4 cycle (800 - 1000 ns) and places

77

r- W 1=- i!TOuP

--i i i ..-.. - . ,~ - --

a ii

c 7 w
SA - a

-, - -i

F I5t S t 190
78-

r - .ai

r-- !a

U

I ' ii

Figure 5-12: Computer Simulation for Instruction 199

78

!*- 4's- ,~~

vT7 7J -1 - W jI

WM.0 f.11 I -T-
S .U -- -

13UI . U=

T. Ul JJ W? T ~ F

- LF

a O.A3&.. b ___ __=

D9

-U.Z U.

"I..;.a

ZVOUNM L. a 79

ava L -U ~ \ ; U % / ~ . ~ \ * . ~ * $ ' f -

the high word on the bus during the subsequent Tl/T4 cycle

(1000 - 1200 ns). MBUSHI<15..0> shows 139F and ABCD on the

bus respectively. During the third Tl/T4 cycle SLVTOCPUS2C*

pulses low, Q<14> pulses low, and the controller returns to

the wait state.

J. LOAD C REG -wA REG (INSTRUCTION 110)

This instruction is identical in nature to instruction

000. It takes only three cycles and does not transfer any

data to or from the CPU. The C register is enabled and the

select lines for the A register are set for parallel

loading. Figure 5-14 shows the computer simulation. The A

register is loaded with CAFECAFEh (1340 - 1540 ns). After

the load, Q<5> and Q<14> pulse low and the instruction is

complete. ENA* is pulsed low at 3340-3540 ns to check the

transfer. INBUS<31..0> during this time period verifies the

transfer.

K. LOAD B REG ..A REG (INSTRUCTION 111)

This instruction is identical to irstruction 110 except

that B is the source register instead of C. The B register

is initially loaded with FACEFACEh. Figure 5-15 shows the

computer simulation for this instruction.

L. SERIAL TRANSFER IN FROM EXTERNAL SOURCES

Serial loading the B' and C' registers from external

interstages does not require a command from the CPU. Upon

30

[i ' | , - -- l -T I .. vr awrM ' r . L. .=.,. , , . . . M tr c' ' , . i ' .. -.. - , ",. W7 w 7. fl2 -, ''' ;' %". *' ., 'J * "J* -* .y

U-i

-c I I

I
EI

:.,CI - I i

- -iI

,3 I I

a
i

F- -

3 5

I I

*, 8 1

Z.

aa..e 4b "' -

334 I .b, z. -

v L"s. Z1 -i 3339

-LT M. in pi . U z

I M2

ock . Z, I
We lb'.

Ic . U V
no"&

I.4A .J___
D" S n* 40S'4. . 73. 336-

CC X U

Fiuresaf 5-5 opue iulto orIsrctI l

SaTOCKI82

Z.-n, ~~.~\ p V

a system RESET, the controller sets the select lines on the

two registers to shift left. When the external interstage

is ready to send data, it enables the clock. This clock

signal is used to shift left data into the register and to

count the number of shifts. After 32 bits have been

received, the counter is disabled and the output of COUNT<5>

is high.

Figures 5-16 and 5-17 show the computer simulation.

At 2440 ns the interstage is in the process of executing

instruction 010 when the external interstage enables both

the B' and C' clocks and starts the serial load operation.

The COUNTB<7..0> and the COUNTC<7..0> lines show the count

progress. At 3600 ns, instruction 101, "load the A register

from the CPU", begins. This does not affect the loading of

the B' and C' registers. At 4360 ns, instruction 101 is

complete. At 5600 ns, the external interstage disables the

clock and the interstage counter suspends the count. The

interstage is now in the wait state, but the B' and C'

registers are loaded.

In this simulation, the A register was loaded in

anticipation of a VOTE. In the VOTE simulation (Figures 5-8

through 5-11), the contents of the B' and C' registers were

copied to the B and C registers respectively. At 7600 ns,

INBUS<31..0> (Figure 5-8) shows the contents of the B' and

C' registers. This verifies the successful loading of the

B' and C' registers from external sources.

83

N~

II

! i ,
1.

i I i I

U UI

!I
I °

' Figu~ 5-16: ompute Siuain3:S~ilLa fteB

and I leiste~

'4

and~ ~ ~ CIRgses(ot

55 85

VI. VOTER

The mid-value voter is designed as a finite state

machine with seven variables. The voter serially inputs

three 32-bit numbers and compares one bit from each clock

cycle. Data is received from the A, B, and C 32-bit shift

registers in the interstage by a shift-left operation. The

voter output is concurrently left-shifted back into the

shift registers with the middle value into A, the maximum

value into B, and the minimum value into C. The middle

value is shifted into A so it can be immediately transferred

to the CPU for further comparison and processing. Parallel

voting was examined, but was much too complex and hardware

intensive to use.

A. INTEGER VOTE

Once the A, B, and C registers are loaded and tne

"VOTE" instruction is received, the most significant bit

(31) of each data field is presented to the voter. The

voter will determine equality or inequality of the bits,

determine the proper next state, then output the next bit of

the mid, max and min values. On the leading edge of the

next clock pulse, the voter output is left-shifted into the

least significant bits (0) of each of the 32-bit shift

registers and the next significant bits of each dat.a field

(30) are presented to the voter. At the end of 32 clock

86

ADM~~*

f'A

cycles, the registers contain the same numbers, but they are

stored by mid, max, and min values in the A, B, and C

registers respectively.

Operation of the voter can best be explained by using

an example. Assume for simplicity that a 4-bit number is

used and that register A contains 1001 (9), register B

contains 0111 (7), and register C contains 1110 (14). By

inspection, we can determine that the middle value is 9, the

maximum 14, and the minimum 7.

Figure 6-1 shows the initial condition. The voter

receives the firs-t three bits, S3, compares them and

determines that B is the smallest, and A and C are equal.

The output of the voter is then MID = 1, MAX = 1, MIN = 0

and these bits are presented to the A, B, and C registers.

They are shifted in on the first clock pulse.

MID 1
MAX - 1
MIN - 0

A 1 0 0 1-A -- AReg / Mid
VOTER B - 0 1 1 1 - -BReg /Max

C - 1 1 1 0-0- C Reg /Min

S3 S2 Sl SO

Figure 6-1: Voter Example: First Clock Pulse

Figure 6-2 shows the representation for the second

clock pulse. The voter knows that B is min and the bit is

automatically routed to MIN. Now C is determined to be

87

greater than A. The bit order is A = MID, C = MAX, B

MIN. This is a final state. No more decisions will be made

and the voter will simply route the remaining input bits to

their proper output channel. Figures 6-3 and 6-4 complete

the voting cycle.

MID ---- 0
MAX ----- 1
MIN 1

A do 0 0 1 10- A tg /Mid-
VOTER B -4 - 1 1 1 1 0-- B eg/Max- I

C - - 1 1 0 0 ---- C Reg/Min-

S2 Sl SO S3

Figure 6-2: Voter Example: Second Clock Pulse

MID0
MA X1
MIN1

A - 0 1 1 0 0- A eg/ Mid-
VOTER B 1 1 1 l 4- B Reg /Max-

C 1 0 0 1-- - C Reg /Min -

51 SO S3 S2

Figure 6-3: Voter Example: Third Clock Pulse

MID 1
MAX 0 _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

MIN 1

A 1 1 0 - AReg /Mid-
VOTER B 1 1 1 l-k,- B Reg /Max-

SO S3 S2 Sl

Figure 6-4: Voter Example: Fourth Clock Pulse

88

From Figure 6-4, the fourth clock pulse will load the

shift registers as shown below:

1 0 0 1 A Reg /Mid
1 1 1 0 B Reg /Max
0 1 1 1 C Reg /Min

S3 S2 S1 S0

The middle value, stored in register A, is 9; the

maximum, 14, is in B; and the minimum, 7, is in C. At this

point, the clock to the voter is disabled and the select

lines for the 4-bit shift registers will prohibit any

further shift operations. The values in the registers are

stable.

To perform the vote, thirteen states are required. The

state diagram is shown in Figure 6-5, the state table in

Table 6-1, and the state assignments in Table 6-2. Four

bits are required for the state variables and three bits are

required for the inputs. With seven variables, a Karnaugh

map cannot be used for minterm reduction. A Quine-McCluskey

minterm reduction algorithm was written (Appendix B) and was

used to determine the next state outputs.

The size and number of terms after the reduction is a

function of state assignment. The state assignments shown

in Table 6-2 (a) produce an output with nine terms. By

comparison, the state assignments in Table 6-2 (b) produces

an output with twelve terms. There is an optimal state

assignment that will produce the smallest number of terms.

89

With 13 states, there are nine billion possible

combinations and therefore no easy solution. The state

C MIN AMAX

Figure 6-5: State Diagram for Mid-Value Voter

90

!~

TABLE 6-1
STATE TABLE FOR MID-VALUE VOTER

Present State -Next State
A B C mxl mxO mnl mn0 MX1 MX0 MN1 MNO Max mid Min

0 00 A A X X X
0 01 B C X X
0 10 C B X X
0 11 D X X A
1 00 E A X X
1 01 F X X B
1 10 G X X C
1ill A X X X
0 0X .B B C X X
0 1lX M C B A
lo0x L C A B
1 1lx B C X X
0 X 0 cC B X X
0 X1 K B C A
1iX 0 B A C

1_ _ _ _ _ _ _ _ X 1C B X X
X 00 E E A X X
x 01 H A C B

X A B C
Ki I_ ___I_ E A X X
X 00 D D X X A
X 01 M C B A
Xl1 0 K B C A
Xl 1_ _ __ _ D X X A
0 X0 F F X X 'B
0 X1 L C A 3
1iX0 H A C B
1K] __ ___I_ F K X B
0 0X G G X X C
0 1iX J B A C
lO0X IA BC
1i 1__ __ __ G X K C
X XX H H A C B
xx xI I A B C
Xx 3 3 B A C
X xx K K B c A
xx x L L C A B
X XX M M CB A

91

assignment in Table 6-2 (a) was used to design the voter

since it had the fewest terms.

TABLE 6-2
STATE ASSIGNMENTS

(a) (b)

A 0000 A 0000
B 0100 B 0101
C 1000 C 0110
D 1100 D 1010
E 0001 E 1001
F 0010 F -0111
G 0011 G 1110
H 0110 H 0011
I 0111 I 0001
J 1001 J 0010
K 1011 K 0100
L 1110 L 1000
M 1101 M 1100

For ease in using the Quine-McCluskey algorithm, the 4-

bit present state variables were labeled as D, E, F, and G.

The next state variables were labeled as MX1, MXO, MNl and

MNO. The state variable table in Table 6-1 now looks like:

A B C Present State Next State

A B C D E F G MX1 MXO MNI MNO

0 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 1 0 0
0 1 0 0 0 0 0 1 0 0 0

By using the state assignment in Table 6-2, the Quine-

McCluskey algorithm produced the following terms:

92

MX1 = A*CD*E*FG* + A*B*CE*F* + A*BC*E*F* + B*CE*F*G
+ BC*E*F*G + A*BE*FG + DE*G + DEG* + DF*

MX0 = B*CD*E*F*G + A*B*CD*G* + AB*C*D*G* + A*CD*FG*
+ AC*D*FG* + AB*D*FG + D*EF + DEF* + EF*

MN1 = AC*DE*F*G* + ABC*E*F*G* + B*CD*EG* + BC*D*EG*
+ AB*CD*G* + AB*DEG* + E*FG + EFG* + E*G

MN0 = BC*D*EF*G* + ABC*D*F*G* + A*CDE*F* + A*BCE*F*
+ AC*DE*F* + A*BDEF* + D*FG + DF*G + E*G

Appendix B shows that MXl, MX0, MNl, and MN0 each

reduce from a 58 term canonical sum to a 9 term sum of

products expression. This implementation requires ten gates

per output for a total of 40 gates (see Figure 6-10). Using

the same procedure for MAX, MID, and MIN should also require

a similar number of gates.

However, better minterm reduction can be achieved by

using the next state values MXl, MXO, MNl, and MNO as

inputs. The method used is not a standard approach. Instead

of filling a Karnaugh map with 'l's" (for m interm

reduction), the map is filled with logical equivalents from

the state table. For example, to compute the MAX value,

refer to Table 6-1, Table 6-2, and Figure 6-6. The first

block in the Karnaugh map, 0000 is a don't care. This means

that if the state of the voter is 0000, the positions of the

max, mid, and min outputs do not matter since they are

equal. The next block in the map, 0001, is the state where

A has been determined to be the min value. Therefore, the

max value can be either B or C since they are equal. This

93

same logic is used to complete the remainder of the Karnaugh

maps. Figures 6-6, 6-7, and 6-8 compute MAX, MID, and MIN

respectively.

The logic diagram for MAX, MID, and MIN is shown in

Figure 6-10. The hierarchial body for the voter is shown in

Figure 6-9. In computing the three voter outputs, hardware

has been reduced from 30 gates to 23 gates. Although seven

gates does not seem like much, the size of the gates used is

MN1 MNO
00 01 11 10

00 XB + A + B A+C

01X A A A

IC x C

10 B B jjxj

MAX = MXl MX0* B + MXl MXO C + MXl* MX0 A +
MXl* MN1 A + MXO* MNI* B

Figure 6-6: Computation of MAX

94

16 'Xi~*~* -

MN1 MN0
00 01 11 10

MX1 MX0

00 x B+ C A +B A+ C

01 B +C rX B C

11 A +B B X A

10 A +C C rA X

MID = MXO* MN1 A + MXO MNO B + MXO* MN1* C +
MX1* MN1* B + MX1 MXO MNO* A + MX1* MNO* C

Figure 6-7: Computation of MID

MN1 MN0
00 01 11 10

MX1 MX0

00 X A CB

01 B + C X C B

." 11 A+B Ax B

13 A

MIN = MNI* MNO A + MNI MNO C + MNl MNO* C +
MN1* MNO* A + MX1 MNI* A

Figure 6-8: Computation of MIN

95

77%4167 111 DESIGN AND SIMULATION
OF AN ULTRA R TABLE AULl f

TOLERANT COMPUTING SYSTEM VOTER AND INTERSTAGE(U) NAVAL
POSTGRADUATE SCHOOL MONTEREY CA V K SPURLOCK MAR 86

UCLASSIFIED F/G 9/2

EIIIEEIIEEIIIEEEEEEIIEEIIEE
EllEEEEllllEEE
illEEEEEEEElll
EEIIEIIEEEI

IEEE..'.I~l

RikI Ki
I&- &32

MICROCAov O TEST CHART
PAO6t4A *&Jf(tj 0 STANDARS 196 3 -A

- --. **~v~** .-.- '-'--w;--~-'%

'.d~_O

-Pz~~{~L

much smaller. Simpler gates equate to higher reliability,

which is the ultimate goal of the design.

VOTER
I J3)e-' F 3 A -*INC2>
PS32>* " P S2 B -0 IN<I>
PSc1> -PSI C -IN(O>
PS<>1- PSO MAX -oOUT(2>
NS<3>.- N53 MID -OUTCI>
NS(2>o- N52 MIN OUT0O>
NS81>0 N5
NSl>o- N58

ACLR*

Figure 6-9: Hierarchial Body for the Voter

The voter is designed with LSTTL components since the

SCALD CAD machine has only a complete library for LSTTL

components. However, a severe speed penalty is paid by

using LSTTL. Table 6-3 compares speeds for LSTTL, STTL, and

FAST chips [Refs. 11, 121. Only the chips used in the voter

are compared.

Propagation times for each chip type is compared in

Table 6-4. Best case, worst case and maximum and minimum

propagation delays are computed. The SCALD system uses

nominal propagation delay times for simulations.

It is obvious that a voter constructed with LSTTL chips

will not work with a 10 MHz clock. Of the six test

simulations shown in Figures 6-11, 6-12, and 6-13, none

provide the correct max, mid, and min outputs using a 10 MHz

96

J. 1-s, It 1

I - I

ir ir 41",1

IN- COW ; rI- 1.... mr- r r -

97

T, 1 1 I 8o- !M - ,

977

TABLE 6-3
PROPAGATION DELAYS

LS S FAST
MIN MAX MIN MAX MIN MAX

74 '133 tPLH 15 6 No data
tPHL 38 7

74 '30 tPLH 12 2 6 No data
tPHL 20 2 7

74 '20 tPLH 15 2 4.5 2.4 6
tPHL 15 2 5 2 5.3

74 '04 tPLH 10 2 4.5 2.4 6
tPHL 10 2 5 2 5.3

74 '175 tPLH 25 12 4 7.5
CP to Q tPHL 25 17 4 9.5

74 '00 tPLH 10 2 4.5 2.4 6
tPHL 10 2 5 2 5.3

* All times are in nanoseconds

Table 6-4
PROPAGATION TIMES THROUGH THE VOTER

GATES '04 + '30 + '133 + '175 + '20 + '30 + '04

Using LSTTL

Worst (MAX) 10 + 20 + 38 + 25 + 15 + 20 + 10 = 138 ns

Using STTL

Worst (MAX) 5 + 7 + 7 + 17 + 5 + 7 + 5 = 53 ns

clock. The failure is caused by the 3-level circuit used to

4 compute max, mid, and min (Figure 6-10). With the clock

slowed to 5 MHz, the voter worked perfectly. The voter

98

LM INV"

II

,i

. o t h

99O

ft "

t l I.
SD

!I I
| a € " u 6 I 2 z -

*1 Fiue6I:Cmue iuato o h oe l lz

99S

11

E ... '-

a 5
!

F.o

IA U

... Fiue -2 Fopt.Siuainfo haoer18MzI!U
i0

a
a

I
V - - - - - - I

U

ft

S

ft- .-- I
a

9 1
-- 'V - -

ii
I

-
U

I.

UMI

ft

'I n

U

Eli *

IA

S

MI ft - -.

a

I
- S

A
U -

8

* Figure 6-13: Computer Simulation for the Voter (ii MHz)

I~i

design works, but not with a 10 MHz clock. Table 6-4 shows

that if the breadboard prototype is build using STTL chips,

the voter should work properly with a 10MHz clock.

B. ALTERNATE VOTER

Figure 6-14 shows an alternate voter design. This

design uses a 3-bit steering circuit and has more

propagation delay than the original voter. However, the

gate count and gate complexity is significantly reduced.

Only three different gates are needed: '00, '04, '20; and a

register, '175.

C IN L MIN

Figure 6-14: Alternate Voter Block Diagram

Using a Karnaugh map, a 15-gate implementation for each

stage is developed (Figure 6-15). Two registers store the

state of each stage (both equal, IN1 > IN2 or IN2 > IN1).

Table 6-5 compares the two voters.

102

IN -F i P--H

y um

IN2 u

1N3 ININ2

IN

TABLE 6-5

COMPARISON OF ORIGINAL AND ALTERNATE VOTER

Original Voter Alternate Voter

Number gates 66 45

Number registers 4 6

Using LSTTL for the alternate voter, the worst case

propagation delay is

3 x (15 + 10 + 10) + 25 = 140 ns

Using STTL for the alternate voter, the worst case

propagation delay is

3 x (5 + 5 + 5) + 17 =62 ns

The STTL implementation would work with a 10 MHz clock.

A VLSI implementation would further reduce the propagation

time significantly and the alternate voter could be the

primary voter in VLSI due to its simplicity and subsequent

greater reliability.

C. FLOATING POINT VOTE

The voter was originally designed to vote either

integer or floating point numbers. The format for the IEEE

floating point standard (Ref 9] is shown in Figure 6-16.

The mantissa is normalized with the most significant "1" not

V present in the 23-bit mantissa representation.

104

31 30 230 ;M

51GN BIT 6-BIT MANTISSA 23-BIT NORMALIZE]RNTISSA

Figure 6-16: IEEE Floating Point Representation

The IEEE floating point representation could use the

integer voter except for the sign bit in the most

significant bit. If the sign bit was inverted, then the

voter would perform an accurate vote. Figure 6-17 shows how

six XOR gates could perform this function. The signal "FP"

would be high only long enough for the first bit to be

inverted prior to entering the voter and inverted again

prior to being stored in the register. This concept could

not successfully be simulated since it only aggravated the

timing problem discussed earlier. Use of the XOR gates is

the simplest method to switch between integer and floating

point numbers for the vote.

Use of the XOR gates create another problem. The gates

work only for certain combinations of signed numbers. For

example, if the numbers 5, -7, and -4 are voted, the max-

mid-min output should be 5, -4, -7. The serial voter is

designed as a magnitude voter and its output for the example

would be 5, -7, -4, which is clearly incorrect. To design

the voter to recognize and respond to this condition

105

requires more hardware which is contrary to increasing

reliability. Floating point votes are therefore too

difficult to implement in a simple manner. Hardware

floating point voting should be reexamined in light of the

above to determine whether it is feasible or not.

VOTERA

".FP

"M4E

VOTERB

F~P

PS3. .)F

NS<3. MV VOTERMAX• N51
N50

VOTERMID

FP :E> VOTERIIIN

Figure 6-17: Floating Point Vote

C1
1.06

VII. SUMMARY AND CONCLUSIONS

A. SUMMARY

The original goal of the thesis was three-fold. First,

design a voter, an interstage, and examine procedures to

interface the voter and interstage to the NS32016-10 CPU.

The second goal was to use the Valid SCALD CAD terminal at

the Naval Postgraduate School to simulate and verify the

design. The third involved determining reliability of the

final design and wirewrapping a breadboard prototype.

The first item designed was the voter. This turned out

to be more difficult that first appeared and consequently

the Quine-McCluskey algorithm had to be written. The voter

was successfully tested with both boolean logic programs

written in basic and the SCALD CAD system. Restricted to

LSTTL chips by the SCALD CAD system library, the voter could

not be tested a-t 10 MHz but worked at slower speeds.

Floating point voting was not successfully simulated due to

the propagation delays associated with LSTTL chips.

One of the primary functions of the interstage is to

serially exchange data from two external channels

simultaneously. Full duplex operation requires four shift

registers. A fifth shift register is used to read and write

a doubleword to the CPU. In a typical application, the

interstage can shift data in from the external channels and

107

simultaneously: a) read or write to the CPU, b) serially

transfer data out, or c) vote. A 16-bit watchdog timer and

three modulo-32 counters are used to control the shifts.

The first design iteration for the interstage used more

than 32 control lines. This would require five 2K x 8

PROM's for the controller. The control lines were

eventually reduced to 28 with four lines for the FSM states.

To keep the serial data exchange full duplex, the

design process revealed that more than three mod-32 counters

would be required or else more control lines to the external

interstages (such as Data Sent and Data Acknowledged). This

would require more decoding hardware and more control lines

from the controller.

Interfacing the interstage to the NS32016-10 CPU turned

out to be very challenging. After many phone calls to

National Semiconductor to clarify the explanations given in

the databook, the control signals that the CPU sends to the

interstage were simulated on the SCALD CAD system. The

interstage then responded to these CPU commands and executed

the given instruction.

Using the SCALD CAD machine turned out to be extremely

time consuming and not as efficient as one would think. The

operating system version on the machine when the thesis

began was 7.51. Drawing compilations and simulations were

extremely slow. For a circuit the size of the thesis,

compilations and simulations took about an hour.

108

The SCALD CAD system was very complicated and difficult

to learn to use. Reading the manuals was not a simple task.

Also there were software bugs in the system. One particular

simulation error with the buffers took over 30 hours (most

due to slow simulation times) to isolate the problem which

was subsequently acknowledged by Valid Inc. as a "known

bug". An inordinate amount of time was then spent trying to

simulate and model around the "known bugs" to validate the

design. A lot of time was wasted trying to compensate for

software deficiencies in the SCALD.

A new operating system, Version 8.0, was installed in

February 1986. The problems with the buffer were resolved

in the new version and the simulator was much faster. It

was now feasible to simulate the entire instruction set and

Avalidate the complete design.

Although the simulator was extremely fast, it still

took about 15 minutes to set-up and enter the simulator.

Recovery from swap space errors, which were frequent, took

about 20 minutes.

Another problem with the SCALD was the number of

students using the machine for assigned laboratories. With

two classes and thesis students, the machine's disk space

was always near capacity. Although unverified, the SCALD

machine seemed to have more problems when disk space used

was over 95 percent.

109

The SCALD system simulations were very accurate and

pointed out timing and synchronization problems. These

simulations are responsible for the conclusions presented in

this thesis. Using the simulator to find and eliminate

design errors, according to experienced personnel, was much

easier than troubleshooting a wirewrapped prototype. This

is probably a very fair statement considering that the

interstage has 32 control lines, four 8-bit counters, one

16-bit counter, a 32-bit internal bus, and five 32-bit shift

registers.

The SCALD system is not very user friendly and is very

difficult to learn to use. Swap space errors, which locked

up the computer, were frequent and required a reboot in

order to recover. Overall, the SCALD system is not

recommended for use by an inexperienced person. The time

required to learn the machine's capabilities offsets most of

the gains -that can- be realized from the computer

simulations.

The breadboard prototype was not constructed since a

final design was not developed. The initial design effort

revealed flaws in the original concept for the interstage

and the actual design of the voter. Until the voter and

interstage design is reexamined, there is no need to

construct a prototype model.

110

B. CONCLUSIONS

The concept for the interstage in this thesis uses too

much hardware. It is clearly too complex to be viable and

the complexity of the interstage hurts the overall

reliability. The interstage must be reduced in scope.

First, the mod-32 counters used to count the bits

arriving from the external interstages are not necessary.

All these counters are doing is counting clock pulses. If a

noise spike appears on the external clock line, one or more

bits of the 32-bit stream will be lost since the counter

will count the spike as the first bit, then stop the counter

one bit early. If the noise spike appears after the data is

input and prior to the vote, then the counter provides

protection against error. It definitely is not worth all

the extra hardware to catch a 50% probability of error.

Furthermore, it is unimportant to know whether the clock

line or the data line is malfunctioning. When the SIR

network shuts the malfunctioning computer network down, it

does not care what the problem is since it cannot fix the

problem. Maintenance personnel who remove the defective

network will determine the exact nature of the failure.

The timing problem caused by using the GENTIMER to

count the bits entering the voter and to count the bits

transferred to external interstages can be solved by adding

an extra counter. One counter would be dedicated to

i 111

counting during voting and the other would be dedicated to

counting bits transferred out to the other interstages.

The B' and C' registers are necessary to provide data

storage during full duplex operations. If the system the

fault tolerant computer supports operates slow enough, full

duplex operations may not be necessary. Elimination of this

feature will remove two 32-bit shift registers and their

associated control lines.

The watchdog timer register could be eliminated. For

most applications, the watchdog timer will count for a fixed

period of time, provide a flag, then will be reset. The

start count could be hardwired to the counter and the

watchdog timer would not be necessary. Removal of the

watchdog timer register must be weighed against the need to

provide a variable watchdog timer window.

More research should be done to decide whether a

hardware voter is more reliable in the long run than a

software voter. Unquestionably, the serial hardware voter

is at least 3 to 4 times faster than a CPU. The hardware

voter can perform a vote on 32-bit data in 32 clock cycles.

A software voter would require much more time due to the

overhead of fetching instructions, transferring and

comparing vote results, and the fact that most CPU execution

cycles take at least three of four clock cycles.

112

d:R: -' .-

Also, the algorithms used to simulate the CPU on the

SCALD system have to be verified. This requires physically

stepping through the slave instructions provided by the NS

32016-10 CPU, watching the CPU control lines, and verifying

the timing. If the test verifies the procedures used in the

computer simulation, then the timing in the interstage

controller is accurate.

Finally, using the Custom Slave Processor mode in the

NS 32016-10 CPU works very well. Interfacing and passing

instructions and operands is simple. The Custom Processor

can be designed to act as a parallel processor with a

minimum of hardware.

113

-P 6L

APPENDIX A: SCALD APPLICATION NOTES

The SCALD system, by Valid Logic Systems, Inc., is an

interactive, high resolution graphics digital logic

simulator. A keyboard and mouse are used to draw logic

diagrams on a video screen. Text files, required for

compilation and simulation, are supported by a UNIX

operating system.

Libraries resident in the disk contain the components

used in the simulations. Of concern to this thesis is the

LSTTL and FAST libraries. The STTL library, which would

have been used because of the small propagation delays, is

currently not installed at the school.

After logging onto the system, the Graphics Editor

(GED) is entered. The mouse controls a moving cursor on

the screen. Components from the library are attached to the

cursor and fixed into position (Figure B-la). Wires are

added to interconnect the bodies (Figure B-lb). Once the

drawing is completed (Figure B-ic), signal names are

attached to the wires (Figure B-id).

Signal names are used to place logical values (high or

low) onto wires and are used to read logical values from a

wire. Signal name conventions are:

Subscripts: Subscript ranges are enclosed in < >.
BUS<15..0> 16-bit signal
BUS<15> MSB of BUS<15z.0>
ST<3..0> 4-bit signal

114

a) Positioning bodies

b) Attaching wires

* C) Completed Drawing

9115

Assertion: * indicates low assertion level.
SPC*
ENABLE*

Hierarchial: I is appended to signals that inter
face hierarchial bodies to a low
level circuit diagram.
G is appended to signals that are
are global throughout the hierarchy
RESET I
CLOCK G

Once the drawing is completed, it is written. Writing

a drawing simply stores the drawing onto the disk. Path

properties are attached to each body by the SCALD system

(1P, 2P, Figure B-id) during the write process. The path

properties identify each component and can be used to

quickly find a particular component.

The designer can create a custom library by using

hierarchial bodies. A low level circuit is drawn in GED

(Figure A-l). The signal names that are to interface with

the hierarchial body are appended with I. Unappended

signals are invisible to a higher-level body. Figure A-2

shows a high-level hierarchial body for the circuit in

Figure A-1. The hierarchial body can be used in another

drawing and performs the same function as the circuit in the

original drawing.

Any system to be simulated can be identified by a

series of interconnected high-level bodies. The higher

level bodies are defined by a series of interconnected low

116

-. -

level bodies. Hierarchial bodies allow complicated designs

to be drawn in a manner easy to manipulate and understand.

LATCH
R

S

Figure A-2: SCALD Hierarchial Body

The simulator allows the designer to control the input

signals and simulate the circuit for a certain length of

time. The SCALD simulator accounts for the timing

characteristics of each component and produces timing

* diagrams that can be used to verify the design or identify

and correct errors. Timing diagrams are used throughout

this thesis.

Time can be saved and multiple simulations can be

quickly run using "script" files. A script file is a text

file that provides a sequence of commands to the simulator.

The key point is that simulations can be recreated or

signals modified slightly and the effects on the outputs

117

can be studied with a minimum of effort. Without script

files, the procedure shown above would have to be executed

every time a signal is changed.

.

.4

4

* 118

4

APPENDIX B: QUINE-MCCLUSKEY MINTERM REDUCTION ALGORITHM

Design of the voter turned out to be a seven variable

problem, one variable too large for a standard Karnaugh map.

A minterm reduction algorithm was therefore required. A

check with several professors in the Electrical & Computer

Engineering department and the Computer Science department

failed to produce a copy of the algorithm. The NPS Computer

Center performed a search with negative results.

The book by Fletcher, "An Engineering Approach to

Digital Design" [Ref. 10] contained a boolean reduction

algorithm. However, it was written in extended ALGOL 60 and

could not be used.

This left the Quine-McCluskey tabulation method for

minterm reduction. The book by Mano, "Digital Logic and

Computer Design" [Ref. 4], explained the tabulation method

very well and was used to write the algorithm in this

appendix.

The Quine-McCluskey reduction algorithm is written in

IBM basic and can be used with an Apple with minor changes

to the algorithm. Unfortunately, the relatively small

memory of the Apple II+ limits its use. The algorithm is

very memory inefficient, but very interactive. Writing,

testing, and using the algorithm turned out to be extremely

time consuming. It was written as quickly as possible and

119

, -+ + + v,", 9<% -?'- .'"i.'-' '' -'o-'".-'+.-................................ +- +, '-.''?','':'-.' -' + , -.-

is very memory inefficient. No documentation for the

algorithm was written.

The output files for MNl, MN0, MXl, and MX0 are shown

on pages 132 - 143. The next concern was to verify the

correctness of the reductions. A "logic checker" algorithm

was quickly written. It produces a list of minterms that is

generated by MNl, MN0, MXl and MX0. This list was then

doublechecked against the original minterm list. The

minterm list matched for all four functions. Although this

proved that the functions were correct, it did not show if

they are indeed minimum. A copy of the logic checker for

MXI is shown in pages 144 - 145 and the output of the

checker is on pages 146 - 149.

120

4.4W

1 PRINT"THIS IS THE REDUCED SLICK VERSION USING READ AND
DATA STATEMENTS"

2 PRINT"LOCATED IN STATEMENTS 205 AND 241-249":PRINT
3 PRINT"CHECK THE DATA STATEMENTS TO ENSURE YOU HAVE THE

DESIRED MINTERMS"
4 PRINT"ENSURE THAT THE LAST VALUE IN THE DATA STATEMENT IS

NEGATIVE"
5 PRINT:INPUT"PRESS ANY KEY TO GO ON";UX$
10 REM QUINE-MacCLUSKEY MINTERM REDUCTION ALGORITHM
20 REM VIRGIL SPURLOCK, NAVAL POSTGRADUATE SCHOOL
30 REM 14 OCTOBER 1985, NO DOCUMENTATION WRITTEN
40 REM DURING A RUN, IF THE ERROR "SUBSCRIPT OUT OF RANGE

I N "

50 REM APPEARS, INCREASE THE SIZE OF THE ARRAY IN LINES
195 OR 200

60 REM PROGRAM WILL RUN ON IBM BASIC
70 REM PROGRAM WILL RUN ON APPLE II+ USING MBASIC BY MICRO

SOFT (REQUIRES
80 REM 80 COLUMN CARD AND CPM (Z-80) CARD
90 CLS
100 CLEAR
110 INPUT"DO YOU WANT A HARDCOPY OF THIS TRANSACTION? (Y/N) "

;COPY$
120 IF COPY$ <> "Y" THEN GOTO 140
130 INPUT"DO YOU WANT THE LONG VERSION PRINTED (Y/N) ";XXXX$
140 REM
150 INPUT"HOW MANY BITS IN EACH MINTERM ";VA
160 NUMBER=2^VA
170 LARGE=NUMBER-1
180 DIM B(NUMBER)
190 PRINT:PRINT"INPUT THE MINTERMS, ONE AT A TIME. INPUT A

NEGATIVE NUMBER WHEN COMPLETED."
200 FOR I = 0 TO NUMBER
205 REM STATEMENT 210 HAS BEEN MODIFIED
210 READ B(I)
220 IF B(I) > LARGE THEN PRINT"MINTERM TOO LARGE. REENTER":

GOTO 210
230 IF B(I) < 0 THEN GOTO 250
240 NEXT I
241 REM
242 DATA 16,32,17,81,33,97,18,50,35,51,8,40,24,56,72,104,

88,120,12,28,44,60,76,92,108,124,9,25,41,57,73,89,105,
121,11,27,43,59,75,91,107,123,13,29,45,61,77,93,109,125,
14,30,46,62,78,94,110,126,-9 :REM MXI

243 REM
244 DATA 16,64,17,81,18,50,66,98,67,83,4,68,20,84,36,100,52,

116,12,28,44,60,76,92,108,124,6,22,38,54,70,86,102,118,
7,23,39,55,71,87,103,119,13,29,45,61,77,93,109,125,14,
30,46,62,78,94,110,126,-9 :REM MXO

245 REM
246 REM DATA 80,96,2,34,18,50,66,98,82,114,3,19,35,51,67,83,

121

99,115,20,84,36,100,72,104,76,92,6,22,38,54,70,86,102,
118,7,23,39,55,71,87,103,119,11,27,43,59,75,91,107,123,
14,30,46,62,78 ,94 ,110,126,1-9 :REM MN1

247 REM
248 DATA 48,96,1,65,17,81,33,97 ,49,113,3,19 ,35,51,67,83,199,

115,36,100,24,56,72,104,44,60,7,23,39,55,71,87,103,119,
9,25,41,57,73,89,105,121,11,27,43,59,75,91,107,123,13,
29,45,61,77,93 ,109 ,125,-9 :REM MN0

249 REM
250 PRINT:PRINT"THERE ARE ";I;" TOTAL MINTERMS":PRINT
260 IF I > 2 VA THEN PRINT:PRINT:PRINTII****** ERROR ****
270 IF I > 2 AVA THEN PRINT:PRINT"1TOO MANY MINTERMS FOR THE

NUMBER OF BITS ENTERED. RUN TERMINATED":END
280 PRINT "PRESS ANY KEY TO CONTINUE"
290 VIR$=INKEY$: IF VIR$="" THEN 290
294 REM
300 CPT=I-1:MAJ=0:PDQ=VA-1:VIRGIL=VA+1:PNT=0
310 DIM X$(2*I+I/2),Y$(VA),M$(VA,2*I),P$(2*I+I/2),Q$(VA,2*

I) ,G$(VA,2*I) ,PI$(I)
320 DIM D(I,2*I),NONE(I+1),NO(I),GROUP(3*VA),SCAN(I)
330 CLS
340 GOSUB 4150
350 GOSUB 4340.
360 PRINT
370 INPUT"REVIEW THE MINTERMS. ARE THERE ANY ERRORS (Y/N)

"o;YUK$
380 IF YUK$="Y" THEN GOSUB 4460
390 IF YUk$<>"Y" THEN GOTO 440
400 INPUT"ARE THERE ANY MORE ERRORS ";MORE$
410 IF MORE$<>"Y" THEN GOTO 440
420 IF MORE$="Y" THEN GOSUB 4460
430 GOTO 400
440 GOSUB 4030
450 GOSUB 4150
460 PRINT"PRESS ANY KEY TO CONTINUE"
470 VIR$=INKEY$: IF VIR$="" THEN 470
480 CEJS
485 PRINT "START TIME OF THE ROUTINE IS ";TIME$
486 IF COPY$="Y" THEN LPRINT:LPRINT TAB(10) "START TIME OF

THE ROUTINE IS ";TIME$:LPRINT
490 PRINT:PRINT"1 THE MINTERMS ARE NEXT SORTED BY THE NUMBER

OF ONES":PRINT
500 IF XXXX$="Y" THEN LPRINT:LPRINT:LPRINT" THE

MINTERMS ARE NEXT SORTED BY THE NUMBER OF ONES":LPRINT
510 CNT = -1
520 FOR J = 0 TO VA
530 COUNT=0
540 PRINT "----------------

550 IF XXXX$="Y" THEN LPRINT"
560 FOR K = 0 TO I-I
570 IF NO(K)<>J THEN GOTO 660

122

.... '** '

590 CNT-CNT+l : COUNT=COrJNT+1
590 GROUPW()-COUNT
600 D(JCOUNT)=B(K)
610 NONE (CNT) =NO (K)
620 M$(J,COUNT)-X$(K)
630 P$ (CNT)=-X$ (K)
640 IF XXXX$-"Y" THEN tLPRINT TAB(10) M$(J,COJNT) ;" I;D(

J,COUNT)
650 PRINT M$(J,COUNT) ;" ;D(J,COUNT.)
660 NEXT K
670 NEXT J
680 IF XXXX$-"Y" THEN EJPRINT"
690 FOR ABCDE = 1 TO VIRGIL
700 PRINT:PRINTU**** REDUCTION PASS NUMBER";ABCDE;' l
710 IF XXXX$-"Y" THEN LPRINT:LPRINT:LPRINT"

REDUCTION PASS NUMBER";ABCDE;"l *****$§:LPRINT
720 IF XXXX$="Y" THEN LPRINT"
730 AA=0:BB=0:CC=-1
740 GOSUB 1100
750 GOSTJB 1750
760 VA=AA-1
770 FOR J=O TO AA-1
780 GROUP (J) GP (J)
790 NEXT J
800 FOR R = 0 TO AA-1
810 FOR S = 1 TO GP(R)
820 M$(R,S)=G$(RtS)
830 NEXT S
840 NEXT R
850 CPT=CC
860 FOR YEZ = 0 TO CC
870 X$(YEZ)=P$(YEZ)
880 NEXT YEZ
890 NEXT ABCDE
900 FOR K1l TO I-1
910 SCAN(K)=0
920 FOR M=l TO MAJ
930 D(M,K)=0
940 GROUP(M)=0
950 NEXT M
960 NEXT K
970 GOSUB 1910
980 GOSUB 2560
990 FOR BEER=O TO I-1
1000 GOSUB 2900
1010 BEERMAN=0
1020 FOR TAP=1 TO MAJ
1030 FOR KEG=0 TO I-I
1040 BEERMAN=D(TAP,KEG) +BEERMAN
1050 NEXT KEG
1060 NEXT TAP

123

4Il

1070 IF BEERMAN=0 THEN GOSUB 3890
1080 NEXT BEER
1.090 END
1100 REM *************************

1110 REM SUBROUTINE PERFORMS MINTERM REDUCTION
1120 REM ************************ *

1130 FOR N1 = 0 TO VA-i
114 CRZ= 0 :CRX= 0
1150 FOR J = 1 TO GROUP(N1)
1160 CRY = 0
1170 FOR K =1 TO GROUP(N1+1)
1180 FLAG = :CRZ=CRZ+1:CXX=0
1190 Q$(N1,CRZ)=M$(N1,J)
1200 FOR L=1 TO PDQ+1
1210 IF MID$(M$(N1,J),L,1)<>MID$(M$(N1+1,K),L,1) THEN GOTO

1230
1220 GOTO 1260
1230 MID$ (0$(N1,CRZ) ,L)="-"
1240 CXX=CXX+1
1250 IF CXX > 1 THEN FLAG1l
1260 NEXT L
1270 IF FLAG = 1 THEN CRZ = CRZ - 1:GOTO 1500
1280 BB=BB+1
1290 IF BB <= 0 THEN GOTO 1350
1 1300 FOR QQQ = 1 TO CRZ-1
1310 IF Q$(N1,CRZ)<>Q$(N1,QQQ) THEN GOTO 1340
1320 BB=BB-1
1330 GOTO 1490
1340 NEXT 000
1350 G$(AA,BB)=Q$(N1,CRZ)
1360 GP(AA)=BB
1370 IF XXXX$="Y" THEN LPRINT"
1380 CC=CC+1
1390 REM
1400 P$(CC)=Q$(N1,CRZ)
1410 PRINT Q$(N1,CRZ);
1420 IF XXXX$="Y" THEN LPRINT Q$(N1,CRZ);
1430 IF ABCDE < 2 THEN GOTO 1470
1440 PRINT
1450 IF XXXX$="Y" THEN EJPRINT
1460 GOTO 1490
1470 PRINT" l";D(N1,J);",";D(N1+1,K)
1480 IF XXXX$="Y" THEN LPRINT " ";D(N1,J);",";D(N1+1,K)
1490 GOSUB 1570
1500 NEXT K
1510 NEXT J
1520 PRINT
1530 IF XXXX$="Y" THEN LPRINT"
1540 BB=0:AA=AA+1
1550 NEXT NI
1560 RETURN

124

"I.,,

1570 REM ***
1580 REM SUBROUTINE CREATES PRIME IMPLICANT LIST
1590 REM ***
1600 HLD=O
1610 FOR RAY = 0 TO CPT
1620 IF X$(RAY)=M$(NI,J) THEN GOTO 1680
163,0 NEXT RAY
1640 FOR RAY=0 TO CPT
1650 IF X$(RAY)=M$(N1+1,K) THEN GOTO 1680
1660 NEXT RAY
1670 GOTO 1730
1680 FOR MAY=RAY TO CPT-1
1690 X$ (MAY) =X$ (MAY+1)
1700 NEXT MAY
1710 CPT=CPT-1:HLD=HLD+1:IF HLD>=2 THEN GOTO 1730
1720 GOTO 1640
1730 RETURN
1740 REM **
1750 REM SUBROUTINE THAT KEEPS MINTERMS
1760 REM ***
1770 IF CPT=-1 THEN RETURN
1780 FOR YO=0 TO CPT
1790 MAJ=MAJ+.
1800 PRINT"PRIME IMPLICANT #";MAJ;" If

1810 IF XXXX$="Y" THEN LPRINT" PI#";MAJ;" ",
1820 PI$(MAJ)=X$(YO)

4 1830 PRINT PI$(MAJ);
1840 IF XXXX$="Y" THEN LPRINT PI$(MAJ);
1850 PRINT
1860 IF XXXX$="Y" THEN LPRINT
1870 NEXT YO
1880 RETURN
1890 IF XXXX$="Y" THEN LPRINT
1900 RETURN
1910 REM ***
1920 REM SUBROUTINE TO PRINT OUT THE PRIME IMPLICANTS
1930 REM ***
1940 PRINT:PRINT"NOW PRINT THE LIST OF PRIME IMPLICANTS"
1950 IF XXXX$="Y" THEN LPRINT:LPRINT:LPRINT" COMPL

ETE LIST OF PRIME IMPLICANTS":LPRINT
1960 FOR T = I TO MAJ
1970 PRINT"PI #";T;" "

1980 IF XXXX$="Y" THEN LPRINT" PI #";T;" ""

1990 PRINT PI$(T);
2000 IF XXXX$="Y" THEN LPRINT PI$(T);
2010 PRINT" ";
2020 IF XXXX$="Y" THEN LPRINT" ""

2030 GOSUB 2080
2040 PRINT
2050 IF XXXX$="Y" THEN LPRINT
2060 NEXT T

125

2070 RETURN
2080 REM ***
2090 REM SUBROUTINE COMPUTES DECIMAL EQUIVALENTS
2100 REM ***
2110 SUM=0
2120 SD=0 :REM THIS COUNTS THE NUMBER OF DASHES
2130 FOR J=1 TO PDQ+1
2140 IF MID$(PI$(T),J,1)="-" THEN SD=SD+1
2150 NEXT J
2160 IF SD=0 THEN TMT=l
2170 IF SD>0 THEN TMT=2^SD
2180 FOR X=0 TO PDQ
2190 Y=ABS(X-PDQ)
2200 IF MID$(PI$(T) ,X+1,l)="0"- THEN GOTO 2240
2210 IF MID$(PI$(T),X+1,1)="I" THEN GOTO 2240
2220 REM HERE IS WHERE THE DASHES ARE HANDLED
2230 SD=SD-1:GOTO 2280
2240 FOR J=l TO TMT
2250 MID$(X$(J),X+1,1)=MID$(PI$(T),X+1,1)
2260 NEXT J
2270 GOTO 2390
2280 CNT=0
2290 TOGGLE='0"

2300 FOR J=l TO TMT
2310 MID$(X$(J),X+1,1)=TOGGLE$
2320 CNT=CNT+1
2330 IF CNT >= 2ASD THEN GOTO 2350
2340 GOTO 2380
2350 IF TOGGLE$="1" THEN TOGGLES="0": GOTO 2370
2360 IF TOGGLES="0" THEN TOGGLE$="1"
2370 CNT=O
2380 NEXT J
2390 NEXT X
2400 FOR M=l TO TMT
2410 SUM=O
2420 FOR J=0 TO PDQ
2430 X=ABS(J-PDQ)
2440 F=ASC(MID$(X$(M) ,J+1,1))-48
2450 SUM=SUM+F* (2^X)
2460 NEXT J
2470 NONE(M)=SUM
2480 NEXT M
2490 FOR J=l TO TMT
2500 D(T,J)=NONE(J)
2510 NO(T)=TMT
2520 PRINT NONE(J) " "-
2530 IF XXXX$="Y" THEN LPRINT NONE(J)
2540 NEXT J
2550 RETURN
2560 REM **
2570 REM SUBROUTINE DEVELOPS PRIME IMPLICANT TABLE

* 126

2580 REM **
2590 PRINT:PRINT:PRINT:PRINT:
2600 IF COPY$="Y" THEN LPRINT:LPRINT:LPRINT TAB(10) "PRIME

IMPLICANT TABLE":LPRINT
2610 FOR J=0 TO I-i -

2620 PRINT TAB(14+J*4) B(J);
2630 IF COPY$="Y" THEN LPRINT TAB(14+J*4) B(J);
2640 NEXT J
2650 FOR J=0 TO I-i
2660 PRINT TAB(14+J*4) "----"',
2670 IF COPY$="Y" THEN LPRINT TAB(14+J*4) "----"',

2680 NEXT J
2690 FOR J=l TO MAJ
2700 PRINT TAB(10) J;
2710 IF COPY$="Y" THEN LPRINT TAB(10) J;
2720 FOR R=1 TO NO(J)
2730 FOR S=0 TO I-i
2740 IF D(J,R)=B(S) THEN SCAN(S)=1: PRINT TAB(14+S*4) " ;
2750 IF D(J,R)=B(S) THEN IF COPY$="Y" THEN SCAN(S)=1: LPRINT

TAB(14+S*4) " X";
2760 NEXT S
2770 NEXT R
2780 PRINT
2790 FOR H=0 TO I-i

.2800 D(J,H)=0
2810 NEXT H
2820 FOR H=0 TO I-i
2830 IF SCAN(H)=1 THEN D(J,H)=1

2840 SCAN(H)=0
2850 NEXT H
2860 IF COPY$="Y" THEN LPRINT
2870 NEXT J
2880 IF COPY$="Y" THEN LPRINT:LPRINT
2890 RETURN
2900 REM **
2910 REM SUBROUTINE PERFORMS REDUCTION ON PI TABLE
2920 REM **
2930 FOR Z=0 TO I-i
2940 SCAN(Z)=0
2950 NEXT Z
2960 GOTO 3070
2970 IF XXXX$="Y" THEN LPRINT:LPRINT
2980 FOR R=1 TO MAJ

2990 IF XXXX$="Y" THEN LPRINT TAB(12) "

3000 FOR S=0 TO I-al
3010 PRINT D(R,S) " "-,
3020 IF XXXX$="Y" THEN LPRINT D(R,S) "

-. 3030 NEXT S
3040 PRINT
3050 IF XXXX$="Y" THEN LPRINT
3060 NEXT R

127, *i

3070 FOR J=0 TO I-I
3080 SUM-0
3090 FOR K=I TO MAJ
3100 SUM = D(K,J) + SUM
3110 NEXT K
3120 B(J)=SUM :REM PRINT "J=";J;" B(J)=;B(J)
3130 NEXT J
3140 REM FIRST PASS REDUCTION ON PI TABLE
3150 XCHK=O
3160 FOR XRAY=1 TO I-i
3170 FOR M=l TO MAJ
3180 FOR J=0 TO I-I
3190 IF B(J)<>XRAY THEN GOTO 3290
3200 XCHK=XCHK+1
3210 MING=O
3220 IF XRAY>1 THEN GOSUB 3490
3230 IF MING=5 THEN RETURN
3240 FOR K=1 TO MAJ
3250 IF D(K,J)<>1 THEN GOTO 3280
3260 GROUP(K)=1
3270 GOTO 3290
3280 NEXT K
3290 NEXT J
3300 IF XCHK=O THEN GOTO 3470
3310 NEXT M
3320 PRINT
3330 FOR J=l TO MAJ
3340 IF GROUP(J) <> I THEN GOTO 3390
3350 FOR K=0 TO I-i
3360 IF D(J,K)=I THEN SCAN(K)=I:D(J,K)=0
3370 D(J,K)=0
3380 NEXT K
3390 NEXT J
3400 FOR K=0 TO I-I
3410 IF SCAN(K)<>1 THEN GOTO 3450
3420 FOR J=l TO MAJ
3430 D(J,K)=0
3440 NEXT J
3450 NEXT K
3460 IF XCHK>0 THEN GOTO 3480
3470 NEXT XRAY
3480 RETURN
3490 REM ***
3500 REM SUBROUTINE HANDLES MULTIPLE COLUMN CHOICES
3510 REM ***
3520 FOR C=0 TO I-1
3530 NO(C)=0
3540 NONE(C)=0
3550 NEXT C
3560 FOR 1=1 TO MAJ
3570 FOR J=0 TO I-i

128

3580 IF B(J)<>XRAY THEN GOTO 3630
3590 FOR K= TO MAJ
3600 IF D(K,J)<>I THEN GOTO 3620
3610" NO(K) =1
3620 NEXT K
3630 NEXT J
3640 NEXT M
3650 FOR E=l TO MAJ
3660 SUM=0
3670 IF NO(E) <> 1 THEN GOTO 3720
3680 FOR F=0 TO I-i
3690 SUM=D(E,F)+SUM
3700 NEXT F
3710 NONE(E)=SUM
3720 NEXT E
3730 MAX=O
3740 FOR G=l TO MAJ
3750 IF NONE(G) >= MAX THEN MAX=NONE(G):HOLD=G
3760 NEXT G
3770 GROUP(HOLD)=1
3780 FOR A=0 TO I-i
3790 IF-D(HOLD,A)=I THEN SCAN(A)=l:D(HOLD,A)=0
3800 NEXT A
3810 FOR B=0 TO I-i
3820 IF SCAN(B)<>1 THEN GOTO 3860
3830 FOR C=1 TO MAJ
3840 D(C,B)=0
3850 NEXT C
3860 NEXT B
3870 MING=5
3880 RETURN
3890 REM ***
3900 REM SUBROUTINE PRINTS THE FINAL PRODUCT
3910 REM ***
3920 PRINT:PRINT:PRINT "***** FINAL IMPLICANT LIST *****":PRINT

3930 IF COPY$="Y" THEN LPRINT TAB(10) "***** FINAL IMPLICANT
LIST *****"I:LPRINT

3940 FOR A=l TO MAJ
3945 IF GROUP(A) <> 1 THEN GOTO 4000
3950 PRINT TAB(10) " ";PI$(A)
3960 IF COPY$="Y" THEN LPRINT TAB(15) PI$(A)
4000 NEXT A
4002 PRINT "RUN COMPLETED AT ";TIME$
4004 IF COPY$="Y" THEN LPRINT:LPRINT TAB(10) "RUN COMPLETED

AT ";TIME$:LPRINT
4010 END
4020 RETURN
4030 REM **
4040 REM SUBROUTINE BUBBLE SORT
4050 REM **
4060 FOR Y=0 TO 1-2

129

III.%.I.:';- 'T.. - -".. > - .'/ -> I.. '. - ". .'-,. ;- ' '' ¢Z'. m;' '..,.". . ..

4070 FOR X=Y+1 TO I-i
4080 IF B(Y) < B(X) THEN GOTO 4120
4090 TEMP=B(Y) :TEM$=X$(Y)
4100 B(Y)=B(X):X$(Y)=X$(X)
4110 B(X)=TEMP:X$(X)=TEMP$
4120 NEXT X
4130 NEXT Y
4140 RETURN
4150 REM **
4160 REM SUBROUTINE CREATES BINARY EQUIVALENTS
4170 REM **
4180 Y$(VA)=""
4190 FOR J=0 TO I-i
4200 NUMONE=0:CNT=-:BTEMP=B(J)
4210 FOR M= VA-i TO 0 STEP -1
4220 CNT=CNT+1
4230 -IF BTEMP - 2 M <0 THEN GOTO 4280
4240 Y$ (M) =Y$ (M+1) +"I"

4250 BTEMP=BTEMP-2 M
4260 NUMONE=NUMONE+1
4270 GOTO 4290
4280 Y$ (M) =Y$ (M+1) +"0"
4290 NEXT M
4300 X$(J)=Y$(M+I)
4310 NO(J)=NUMONE
4320 NEXT J
4330 RETURN
4340 REM **
4350 REM SUBROUTINE PRINTS OUT MINTERMS
4360 REM **
4370 IF PNT=1 THEN PRINT"CORRECTED LIST OF MINTERMS":GOTO 4390
4380 PRINT"LIST OF MINTERMS"
4390 IF PNT=l THEN IF COPY$="Y '' THEN LPRINT:LPRINT TAB(10)

"CORRECTED LIST OF MINTERMS ":LPRINT: GOTO 4410
4400 IF COPY$="Y" THEN LPRINT:LPRINT TAB(10) "LIST OF HIN

TERMS" : LPRINT
4410 FOR J=0 TO I-i
4420 PRINT "(";J+1;")" TAB(10) X$(J) TAB(14+PDQ) B(J)
4430 IF COPY$="Y" THEN LPRINT TAB(10) "(";J+l;")" TAB(20)

X$(J) TAB(24+PDQ) B(J)
4440 NEXT J
4450 RETURN
4460 REM **
4470 REM SUBROUTINE IF ERROR IN MINTERM INPUT
4480 REM **
4490 PNT=1
4500 PRINT"TERMINATE THE CORRECTION SESSION BY ENTERING A

NEGATIVE NUMBER"
4510 INPUT"ENTER THE NUMBER OF THE INCORRECT MINTERM ";YECCH
4520 IF YECCH < 0 THEN GOTO 4570
4530 INPUT"ENTER THE CORRECT MINTERM VALUE ";VALUE

130

4540 B(YECCH-1h-VALUE
4550 IF VALUE < 0 THEN GOTO 4570
4560 GOTO 4510
4570 GOSUB 4340
4580 RETURN

131

Output File for MN1

REDUCTION OF STATE1 VARIABLES
OUTPUT MNI 25 OCT 85

LIST OF MINTERMS

1) 1010000 80
(2) 1100000 96
3) 0000010 2

(4) 0100010 34
(5) 0010010 18
6) 0110010 50
7) 1000010 66
8) 1100010 98
9) 1010010 82
10) 1110010 114

(11) 0000011 3
12) 0010011 19
13 0100011 35
14) 0110011 51,15S 1000011 67

S16 1010011 83
-i (17 1100011 99

(18) 1110011 115
19 0010100 20
20) 1010100 84
21) 0100100 36

(22) 1100100 100
23) 1001000 72
24) 1101000 104
25) 1001100 76
26) 1011100 92
27) 0000110 6

(28) 0010110 22
29) 0100110 38
30) 0110110 5
31) 1000110 70
32) 1010110 86
33) 1100110 102
34) 1110110 118

(35) 0000111 7
C 36) 0010111 23

37) 0100111 39
38) 0110111 55

132

, . ' ' , , ' , -' . v , -" " ' ' . -' . . . - " -v . - 6 . % " ' ; " " , "/ , , . . , .-

39) 1000111 71
40) 1010111 87
41) 1100111 103
42) 1110111 119

(43) 0001011 11

(44) 0011011 27.
(45) 0101011 43
(46)
(47) 1001011 75

48) 1011011 91
49) 1101011 107
50) 11 1011 123

(51) 0001110 14
(52) 0011110 30

53) 0101110 46
54) 0111110 62

(55) 1001110 78
(56) 1011110 94
(57) 1101110 110

58) 1111110 126

START TIME OF THE ROUTINE IS 10:51:25

PI# 1 1001-00 72 , 76
PI# 2 1-01000 72 , 104
PI# 3 110-000 96 , 104
PI# 4 -0101-0 20 , 22 , 84 , 86
PI# 5 -1001-0 36 , 38 , 100 , 102

. PI# 6 1010--0 80 , 82 , 84 , 86
PI# 7 1100--0 96 , 98 , 100 , 102
PI#. 8 10-11-0 76 , 78 , 92 , 94
PI# 9 101-1-0 84 , 86 , 92 , 94
PI# 10 ----011 3 , 11 , 19 , 27 , 35 , 43 , 51 59

67 , 75 , 83 , 91 , 99 , 107 , 115 , 123

PI# 11 ---- 110 6 , 14 , 22 , 30 , 38 , 46 , 54 , 62
70 , 78 , 86 , 94 , 102 , 110 , 118 126

PI# 12 --- 0-1- 2 , 3 , 6 , 7 , 18 , 19 , 22 , 23 , 34

35 , 38 , 39 , 50 , 51 , 54 , 55 , 66
67 , 70 , 71 , 82 , 83 , 86 , 87 , 98
99 102 103 114 115 118 119

133

47C

%'*-

FINAL IMPLICANT LIST *

1-01000

110-000
-0101-0

-1001-0
i* 1010--0

* 10-11-0
---- 011

---- 110
--- 0-1-

RUN COMPLETED AT 12:10:48

134

So

.4 .>*[.- ~*~~.-*

OUTPUT File for MNO

REDUCTION OF STATE1 VARIABLES
OUTPUT MN0

LIST OF MINTERMS
1) 0110000 48
2) 1100000 96
3) 0000001 1

(4) 1000001 65
(5) 0010001 17
(6) 1010001 81
7) 0100001 33
8) 1100001 97

9) 0110001 49
10) 1110001 113
I) 0000011 3
12) 0010011 19
13) 0100011 35
14) 0110011 51
15) 1000011 67
16) 1010011 83
17) 1100011 99
18) 1110011 115
19) 0100100 36
20) 1100100 100
21) 0011000 24

(22) 0111000 56
23) 1001000 72
24) 1101000 104
25) 0101100 44
26) 0111100 60

(27) 0000111 7
28) 0010111 23

(29) 0100111 39
(30) 0110111 55

31) 1000111 71
(32) 1010111 87
(33) 1100111 103

34) 1110111 119

35) 0001001 9
36) 0011001 25
37) 0101001 41

135
' (3) 01 1 01 4

(38) 0111001 57
(39) 1001001 73
(40) 1011001 89
(41) 1101001 105
(42) 1111001 121
(43) 0001011 11

44) 0011011 27
45) 0101011 43
46) 0111011 59
47) 1001011 75

(48) 1011011 91
49) 1101011 107
50) 1111011 123

(51) 0001101 13
52) 0011101 29

(53) 0101101 45
(54) 0111101 61
(55) 1001101 77
(56) 1011101 93
(57) 1101101 109

58) 1111101 125

'.

START TIME OF THE ROUTINE IS 20:23:11

PI# 1 010-100 36 , 44
PI# 2 -100100 36 , 100
PI# 3 110-00 96 ,i00
PI# 4 0-1100- 24 , 25 , 56 , 57
PI# 5 011-00- 48 , 49 , 56 , 57
PI# 6 1-0100- 72 , 73 , 104 , 105
PI# 7 110-00- 96 , 97 , 104 , 105
PI# 8 01-110- 44 , 45 , 60 , 61
Pi# 9 0111-0- 56 , 57 , 60 , 61
Pi# 10 --- 0-11 3 , 7 , 19 , 23 , 35 39 , 51 , 55

67 , 71 , 83 , 87 , 99 , 103 , 115 , 119

Pi# 11 --- 1-01 9 , 13 , 25 , 29 , 41 , 45 , 57 , 61
73 , 77 , 89 , 93 , 105 , 109 , 121 , 125

PI# 12 ---- 0-1 1 , 3 , 9 , 11 , 17 , 19 , 25 , 27 , 33
35 , 41 , 43 , 49 , 51 , 57 , 59 , 65
67 73 75 81 83 89 91 97
99 , 105 , 107 , 113 , 115 , 121 , 123

136

~ ~ ~ & ~KLv>N

*** FINAL IMPLICANT LIST *

-100100
1100-00
0-1100-
011-00-
1-0100-
01-110-
--- 0-11
--- 1-01
---- 0-1

RUN COMPLETED AT 21:42:32

137

Output File for MX1

REDUCTION OF STATE1 VARIABLES.
OUTPUT MX1 25 OCT 85

LIST OF MINTERMS

(1) 0010000 16
2) 0100000 32
3) 0010001 17
4) 1010001 81
5) 0100001 33

(6) 1100001 97
(7 0010010 18
(8) 0110010 50
9) 0100011 35
10) 0110011 51
11) 0001900 a
12) 0101000 40
13) 0011000 24
14) 0111000 56
15) 1001000 72
16) 1101000 104
17) 1011000 88

(18) 1111000 120
19) 0001100 12
20) 0011100 28
21) 0101100 44
22) 0111100 60
23) 1001100 76
24) 1011100 92

(25) 1101100 108
26) 1111100 124
27) 0001001 9
28) 0011001 25
29) 0101001 41
30) 0111001 57
31) 1001001 73

(32) 1011001 89
(33) 1101001 105

34) 1111001 121
35) 0001011 11

138

a.

t (36) 0011011 27

37) 0101011 43
38) 0111011 59

(39) 1001011 75
40) 1011011 91
41) 1101011 107

(42) 1111011 123
43) 0001101 13

(4) 0011101 29
(45) 0101101 45

46) 0111101 61
(47) 1001101 77

(49) 1101101 109
50) 111110 125

(51) 0001110 14
(52) 0011110 30
S53) 13 01110 46
(54 0111110 62

55) 1001110 78
56) 1011110 94
57) 1101110 110

(58) 1111110 126

START TIME OF THE ROUTINE IS 16:04:11

PI# 1 00100-0 16 , 18
PI# 2 0-10010 18 , 50
PI# 3 011001- 50 51
PI# 4 001-00- 1 , 17 , 24 , 25
5 010-00- 32 , 33 ,74 , 41

PI# 6 -01-001 17 25 ,81 , 89
PI# 7 010-0-1 33 35 ,41 443

6 6 8 -10-001 33 41 997 ,105
0 9 01-3 4 , 51 , 59

PI# 10 --- 10-1 , 11 , 2 , 27 , 24 , 4 3 ,

57 , 59 ,73 , 75 , 89 , 91
105 , 107 ,121 , 123 ,

Pi# 11 --- 11-0 12,14,28,30,44,46,
60 , 62 , 76 , 8 , 92 , 94
108 ,110 ,124 ,126

PI# 12 ---1-0- 8 9 ,12,13,24 ,25,
28 ,29 ,40 ,41 ,44 ,45

56 ,57 ,60 ,61 ,72 ,73

76 ,77 ,88 ,89 ,92 ,93

104 , 105 , 108 , 109 , 120 ,

121 , 124 , 125

139
% A -

* FINAL IMPLICANT LIST *

0-10010
001-00-
010-00-
-01-001
-10-001
01--011
--- 10-1
--- 11-0
---1-0-

RUN COMPLETED AT 17:21:03

140
W0x'A

Output for MX0

REDUCTION OF STATE1 VARIABLES
OUTPUT MXO

LIST OF MINTERMS

1) 0010000 16
2) 1000000 64

3) 0010001 17
(4) 1010001 81
(5) 0010010 18
6) 0110010 50
7) 1000010 66

(8) 1100010 98

9) 1000011 67
10) 1010011 83
11) 0000100 4
12) 1000100 68

(13) 0010100 20
(14) 1010100 84

15) 0100100 36
16) 1100100 100
17) 0110100 52
18) 1110100 116
19) 0001100 12
20) 0011100 28
21) 0101100 44
22) 0111100 60
23) 1001100 76
24) 1011100 92
25) 1101100 108

(26) 1111100 124

27) 0000110 6
(28 0010110 22
(29) 0100110 38

30) 0110110 54
31) 1000110 70
32) IV10110 86

33) L00110 102
(34) 1110110 118

35) 0000111 7
36) 0010111 23

141

37) 0100111 39

(38) 0110111 55
39) 1000111 71

(40) 1010111 87
41) 1100111 103

(42) 1110111 119
(43) 0001101 13

44) 0011101 29
45) 0101101 45

(46) 0111101 61
47) 1001101 77

(48) 1011101 93
49) 1101101 109
50) 1111101 125
51) 0001110 14

(52) 0011110 30

53) 0101110 46
(54) 0111110 62
(55) 1001110 78

56) 1011110 94
57) 1101110 110

(58) 1111110 126

START TIME OF THE ROUTINE IS 18:27:51

PI# 1 001000- 16 , 17
PI# 2 -010001 17 , 81
PI# 3 10100-1 81 , 83
PI# 4 0010--0 16 , 18 20 , 22
PI# 5 1000--0 64 , 66 68 , 70
PI# 6 0-10-10 18 , 22 50 , 54
PI# 7 1000-1- 66 , 67 70 , 71
P2# 8 1-00-10 66 , 70 98 , 102
PI# 9 10-0-11 67 , 71 83 , 87
PI# 10 --- 011- 6, 7 , 22 , 23 , 38 ,39 ,54

55 , 70 , 71 , 86 , 87 , 102

103 , 118 , 119 ,
P1# 11 --- 110- 12 , 13 , 28 , 29 , 44 , 45 , 60

61 , 76 , 77 , 92 , 93 , 108
109 , 124 , 125 ,

PI# 12 ---- 1-0 4 , 6 , 12 , 14 , 20 , 22 , 28
30 , 36 , 38 , 44 , 46 , 52 , 54
60 , 62 , 68 , 70 , 76 78 84
86 92 94 100 102 , 108

110 , 116 , 118 , 124 , 126

142

*** FINAL IMPLICANT LIST *

-010001
oolo--o

* l000--0
0-10-10
1-00-10
10-0-11
--- o11-
---110-
----1-0

RUN COMPLETED AT 19:45:33

1

4,

'"

'5

. 143

LOGIC CHECKER ALGORITHM USING MX1

5 OPEN "LOGICCHK.TXT" FOR OUTPUT AS #1
6 PRINT #1,"PERFORMS LOGIC CHECK FOR STATE1 VARIABLES"
7 PRINT #1,"MX1"
10 VA=7
20 I=2^VA
30 DIM B(I),X$(I),Y$(VA),NO(I)
40 FOR K=0 TO I-I
50 B(K)=K
60 NEXT K
70 REM
80 REM SUBROUTINE CREATES BINARY EQUIVALENTS
90 REM
100 Y$ (VA)=""
110 FOR J=0 TO I-i
120 NUMONE=0:CNT=-l:BTEMP=B(J)
130 FOR M= VA-I TO 0 STEP -1
140 CNT=CNT+I
150 IF BTEMP - 2^M <0 THEN GOTO 200

160 Y$(M)=Y$(M+1) +"1"
170 BTEMP=BTEMP-2^M
180 NUMONE=NUMONE+1
190 GOTO 210
200 Y$(M)=Y$(M+1) +"0"

210 NEXT M
220 X$ (J) =Y$ (M+1)
230 PRINT X$(J) TAB(4+VA) J TAB(9+VA);
235 PRINT #1, X$(J) TAB(4+VA) J TAB(9+VA);
240 NO(J)=NUMONE
245 GOSUB 500
250 NEXT J
260 CLOSE #1
270 END
500 REM ***** SUBROUTINE THAT PRODUCES LOGICAL VARIABLES *
510 FOR K=I TO VA
520 HOLD$=MID$(X$(J) ,K,I)
525 I(K)=ASC(HOLD$)-48
530 NEXT K
600 A=I(1)
610 B=I(2)
620 C=I(3)
630 D=I(4)
640 E=I(5)
650 F=I(6)
660 G=I(7)
800 REM ******* COMPLETES THE LOGICAL OPERATORS *
810 IF A=0 THEN ABAR=I
820 IF A=l THEN ABAR=0
830 IF B=0 THEN BBAR=1

144

840 IF B=i THEN BBAR=0
850 IF C=0 THEN CBAR-I
860 IF C=i THEN CBAR=0
870 IF D-0 THEN DBAR=i
880 IF D-1 THEN DBAR=0
890 IF E=0 THEN EBAR=I
900 IF E=l THEN EBAR=0
910 IF F=0 THEN FBAR=1
920 IF F=i THEN FBAR=0
930 IF G=I THEN GBAR=0
940 IF G=0 THEN GBAR=I
1000 REM **** ACTUALLY COMPUTES THE LOGICAL FUNCTION *
1010 AND1=ABAR*C*DBAR*EBAR*F*GBAR
1020 AND2=ABAR*BBAR*C*EBAR*FBAR
1030 AND3=ABAR*B*CBAR*EBAR*FBAR
1040 AND4=BBAR*C*EBAR*FBAR*G
1050 AND5=B*CBAR*EBAR*FBAR*G
1060 AND6=ABAR*B*EBAR*F*G
1070 AND7=D*EBAR*G
1080 AND8=D*E*GBAR
1090 AND9=D*FBAR
1100 OUTPUT=ANDI+AND2+AND3+AND4+AND5+AND6+AND7+AND8+AND9
1199 IF OUTPUT>1 THEN OUTPUT=I
1200 REM **** PRINTS THE OUTPUT *
1210 PRINT " ";OUTPUT
1220 PRINT #1," ";OUTPUT
1999 RETURN

I1

145

i.

-,... 4T r ,r r r r r r r-

OUTPUT FILE FOR LOGICAL CHECKER
FOR STATE1, MX1

0 0000000 0
1 0000001 0
2 0000010 0
3 0000011 0
4 0000100 0
5 0000101 0
6 0000110 0
7 0000111 0
8 0001000 1
9 0001001 1

10 0001010 0
11 0001011 1
12 0001100 1
13 0001101 1
14 0001110 1
15 0001111 0
16 0010000 1

-'. 17 0010001 1

18 0010010 1
19 0010011 0
20 0010100 0
21 0010101 0
22 0010110 0
23 0010111 0
24 0011000 i
25 0011001 1
26 0011010 0
27 0011011 1
28 0011100 1
29 0011101 1
30 0011110 1
31 0011111 0
32 0100000 1
33 0100001 1
34 0100010 0
35 0100011 1
36 0100100 0

37 0100101 0
38 0100110 0
39 0100111 0

' 40 0101000 1
41 0101001 1
42 0101010 0
43 0101011 1

146

'

44 0101100 1
45 0101101 1
46 0101110 1
47 0101111 0
48 0110000 0
49 0110001 0
50 0110010 1
52 0110 a
53 0110101 0
54 0110110 0
55 0110111 0
56 0111000 1
57 0111001 1
58 0111010 0
59 0111011 1
60 0111100 1
61 0111101 1
62 0111110 1
63 0111111 0
64 1000000 0
65 1000001 0
66 1000010 0
67 1000011 0
68 1000100 0
69 1000101 0
70 1000110 0
71 1000111 0
72 1001000 1
73 1001001 1
74 1001010 0
75 1001011 1
76 1001100 1
77 1001101 1
78 1001110 1
79 1001111 0
80 1010000 0
81 1010001 1
82 1010010 0
83 1010011 0
84 1010100 0
35 1010101 0
86 1010110 0
87 1010111 0
88 1011000 1
89 1011001 1
90 1011010 0
91 1011011 1
92 1011100 I
93 1011101 1
94 1011110 1
95 1011111 0

147

I.

96 1100000 0
97 1100001 1
98 1100010 0
99 1100011 0
100 1100100 0
101 1100101 0
102 1100110 0
103 1100111 0
104 1101000 1
105 1101001 1
101 1101012 a
108 1101100 1
109 1101101 1110 1101110 1

121 1101111 0
112 1110000 0
113 1110001 0
114 1110010 0
115 1110011 0
116 1110100 0
117 1110101 0
118 1110110 0
119 1110111 0
120 1111000 1S121 1111001 1

122 1111010 0
123 1111011 1
124 1111100 1
125 1111101 ' 1
126 1111110 1
127 1111ii1 0

14

'p

~148

APPENDIX C: PROM MEMORY CONTENTS

The Scald logic simulator loads memories from a Unix

file. Each file begins with a line that gives the bit range

for the memory cells of the PROM and is followed by one or

more memory block definitions. The "MEM BLOCK a,b" command

P.i starts a memory cell by defining a block of memory with

consecutive addresses. The letter "a" is the starting

*4 address in decimal and "b" is the number of addresses in the

block, again in decimal. The "END MEM BLOCK" command

defines the end of the memory block. Memory blocks are used

continuously throughout the file.

The first PROM (27S291.89p) is loaded with the contents

of the unix file proml.dat. PROM 2 7 S2 9 1.88p is loaded from

prom2.dat, PROM 27S291.87p is loaded from prom3.dat and PROM

2 7 S 2 9 1.86 p is loaded from prom4.dat. The four Unix files

are listed on the following twelve pages as shown below:

proml.dat ... pages 150 - 152

prom2.dat ... pages 153 - 155

prom3.dat ... pages 156 - 158

prom4.dat ... pages 159 - 161

149
4.7

FILE-.TYPE = MEMORY..CONTENTS3
BIT_-RANGE m 7. .B:

'MEP4 BLOCK 0,1;
0111 1010;

ENDMENBLOCK;

MEM..SLOCK 512,16;
0111 1010;
0111 1010;
0111 1010;
B111 1010;
0111 1010:
0111 1010;
0111 1010;
0111 1010;
0111 1010;
0111 1010;
0111 1010;

0111 1010;
0111 1010;
01.11 1010;

0111 1010;

NEMJBLOCK 780.1:

E DMMBLOCK;

MEN BLOCK 1024.1:
0111 1010;,

ENDMENBLOCK:

MEN BLOCK 1040,1;
0 I1 1018;

ENDMENBLOCK;

MEN BLOCK 1048.1;
0111 1010:

ENDMEN_BLOCK;

MEN BLOCK 1056.1;
0111 101;

ENDMENBLOCK:

MENBLOCK 1072,1;
0111 1010;

MEN BLOCK 1088, 1:

END_MEN_BLOCK;

MEN BLOCK 1104,1;

0111OC 112Z 1
oVi is..

ENDMENBLOCK;

MEN BLOCK 1120.1;
0111 1010;

ENDMEBLOCK

ME BOC 136,1:-N

ENDF4EMBLOCK:

MEM-BLOCK 1536.3;
0111 1000;
0111 1050;
Bi11 1010:

ENDMENBLOCK:

MEM BLOCK 1568.8;
011 1010sl;
0111 1010;
0111 1ol15.
0111 1510;
0111 1010;
0111 1010;f.
0111 1010;
0111 1510;

ENDMEMBLOCK;

MEM-BLOCK 1584.4:
0101 1010;
0110 1010;
0111 1010;
1111 1011;

ENDMEMBLOCK:

MEMBLOCK 1600,15;
0111 1010;
0111 1010;

81111 Iffto1.
0111 1010;

0111 1010;

0011 1010;

0111 1000;
0111 1000;
0111 1000;
0.11 1000;
0111 Io1a:

END-lIEM_BLOCK;

MEN BLOCK 1616.5;

0111 1010;
0111 1010;
5111 1011:
gill1 1010;

ENDMENBLOCK;

MEM -BLOCK 1632.3;
0111 Io1a;
0111 1011;
0111 1010;

ENDMENBLOCK;

MENPLOCK 1648.3;
0111 1010;
0111 1011;
0111 1010:

END-MEN BLOCK;

151

EM-_BLOCK 1843,10;
1111 1515;

1111 1515;
1o11 1015;
1011 1015;
loll tl~;;
1111 1og0;
1111 logo;
1111 1000;
1111 l1g;
10ll l0;
0511 1510;

ENDMEMBLOCK;

END.

-N

J.~.

FILE-TYPE a MEMORY-CONTENTS;
BITRANGE a 7..Z;

MEMBLOCK 0,1;
05a1 so10;

ENDMEMBLOCK;

MEM BLOCK 512,16;

000l 0010;
0001 ge1s;

Beal ogle;gol 0510;
0gl 0810;

2201 0010;

0001 0015;

END_MEMBLOCK;

MEM BLOCK 780.1;
0001 0515;

END_MEMBLOCK;

MEM BLOCK 1024.1;

ENDMEMBLOCK;

P'HM BLOCK 1040,1;
Biel Os15;

ENDMEMBLOCK;
MEM BLOCK 1048.1;
B01 ge1:

ENDEM_BLOCK:

MEMBLOCK 1056.1;
sial 0010:

ENDMEMBLOCK:

MEM BLOCK 1872.1;
0001 0010:

ENDMEMBLOCK:

MEM BLOCK 1088.1;
0001 s010:

ENDEM_BLOCK:

MEM BLOCK 1104,1:
O0&J1 e010:

ENDMEM_BLOCK:

MEN BLOCK 1125.1:
Bie1 0810:

END_1MENBLOCK:

MEM BLOCK 1136,1:
001 0010:

m1.93

ENDI4EM BLOCK:

MEM BLOCK 1536.3:. Sgffl Oslo;
i .- . 001 1111;

0oal B51o:
END_MEMBLOCK;

MEM BLOCK 1568,8;

0001 0015;

g1 elf0;
0gl 015;
gal 010;
0001 0010;

0001 ga10;
ENDMEMBLOCK;

MEM BLOCK 1584,4;
B0el 111 ;
g0al 5511;
0001 0510;
B101 111;

ENDMEMBLOCK:

MEMBLOCK 1605,15;
gl Oslo;5901 0010;

Seel gals;
gal 0 01 ;
0801 0015;
g0l 8018;
g00l 0015;0001 0015;

00l 0010;

g0l gl;

0001 0015;
S0e1 0010;

6001 0010;
ENDMEMBLOCK;

MEM BLOCK 1616,5:
0il1 0510:o'jol solo;
0111 0010:

-$ 000 0010;
10,31 0510;
0001 0l0l;

ENDMEMBLOCK:

MEM BLOCK 1632,3;0011 0000;

1111 000:0001 Prela.
ENDHEM-BLOCK:

MEMBLOCK 1648,3:
0000 So10;
1110 0g01;
0001 gl0:

ENDMEM_BLOCK;

154

*MEMBLOCK 1843,18;.
soo1 5010;
g0l 0H;
H00l 0510;
goal 0010;
g0al 0010;
gal 0010;
0961 O51o;
0001 0010;
000l 001;
go0l 0015;

END_MEMBLOCK;

END.

• 155

FILE-TYPE - MEMORY CONTENTS;
BITRANGE - 7. .0;

MEM-BLOCK 1.1;
Z110 1010;

S END_t4EMBLOCK;

MEM BLOCK 512.16;

0110 1010;

oi1s 1010;
s110 1610;
o1ls 1010;
Z110 1010;
Z110 1010;
0110 1010;
0110 1010:
Zile 1010;
0110 1010;
0110 1010;
0110 1010;
0110 1010;

0110 1010;
END_MEM_BLOCK:

MEN BLOCK 788,1;
0110 1010;

ENDMEN_BLOCK;

MEM-BLOCK 1024.1;
0110 1010:.

ENDMEN_BLOCK;

MEN BLOCK 10409.1;
0110 1010;f.

ENDMEMBLOCK;

MEM-BLOCK 1948,1:
o110 1010;

ENDMEN_BLOC.;

MEN BLOCK 1056.1;
0110 1010:o.

ENDMENM_BLOCK;

MEN BLOCK 1072,1;
0110 1010;A ENDMENBLOCK:

MEN BLOCK 1088.1;
0110 1010;

ENDMEMBLOCK:

MEN BLOCK 1104.1;
0110 1s10;

END 11EM _BLOCK;

MEMBLOCK 1120,1:
A..~i 01101a1;

ENDHEMBLOCK:

MENBLOCK 1136.1;
0110 1010;

156

E N O.MEM-B LOCK;

MEM-SLOCK 1536.3:
H110 1510;
1110 1010:

'I., ga10 1010;V ENDMEMBLOCK;

MEMBLOCK 1569.8;
0100f 1010:
0101 1010o;
0110 1010:,
0110 ga00;
0110 1000;

ENDMEM_BLOCK:

MEM-BLOCK 1584.4;
s11o 1010;
1110 1010.

01l0 1010;

HEMBLOCK 1600.15;
s110 1010;
0110 1010:
0110 1010;
0110 1010;
0110 1010;
0110 1010;
0110 1010;
0110 1010;
011o 1010;
0110 1010;
o110 1010:

o11s 101:
V01.10 1001:

0010 1010:
END..MEMBLOCK;

MEMBLOCK 1616.5;
011s 1010;

0010 1010:
END_MENBLOCK:

MEMBLOCK 1632.3;
* 0110 1010:

0110 1010;
0a10 1010:

END tEM_BLOCK;

MEMBLOCK 1648,3:

o110 1010:

0010 1010;
ENOMEM_BLOCK;

157

.MEM BLOCK 1843,15;
aIo 1010;

a11o 1010;
0110 1010;
a110 1010;

0110 100;

511 1810;
001e 1010;

ENDMEMBLOCK;

END.

158

- - - - - - - - - ,

FILETYPE *MEMORY-CONTENTS;
.BIT..RANGE -7. .S.

MEM_BLOCK 0,1;
1515 e590:

END_HEM_BLOCK;

MEN BLOCK 512.16;
1505 5555;
1500 0a55;
10g0 5555;
15g5 go55;
1005 g505;
1500 0055
100 0055;
logo 0o50;
1800 0005;
100 0005;

1000 0800f;
10g0 z0os;

END-MEM-BLOCK;

MEMBLOCK 785.1;
0110 e055;

ENDMEMBLOCK:

.4 HEM-BLOCK 1824.4;
la10 a050;

1010 0500:

ENO.J4EM_BLOCK;

MEMBLOCK 1240,1:
1010 0055;

ENDMEM_BLOCK;

HEM-BLOCK 1048.1;

1.015 0005z;
'dl END_'4EM-BLOCK;

'1 HEM-BLOCK 1072,1:
1010 00o0;

ENDHEM BLOCK;

* HMMBLOCK 1072.1;

* ENDHEMBLOCK:

MEMBLOCK 108,1;
1010 UB0E;

END_"IEM-BLOCK;

MEMBLOCK 1104,1;
1.010 O.000:

END-MEM-BLOCK:

1.59

•MEMBLOCK 1136,1;
1sl 0000;

END_MEMBLOCK;
MEM BLOCK 1536,3;

1010 gl;
101a Ha1g;
1088 gr0;

END_HEM_BLOCK;

HEMBLOCK 1568.8;0010 0001;

0010 0010;
1011 g1l;

1010 0101;
1010 0110;1010 1ll;

ENDHEMBLOCK*

MEM BLOCK 1584,4;

Il lllo1010 lo

Il 6ll;

ENDHEMBLOCK*
MEM BLOCK 164,15;

10 10 00 01;
I010 0011;

1016 1a1;

l16l& 0116;

1000 6111;

1010 l61;

tole glib I ;

0110 1011;

1 010 119 1p:

1010 1110;
1010 1000;

4 END I4EM BLOCK*

EDM BLOCK 165

0110toe
0101001;

1000 10000l;

" . HEM BLOCK 1632,3:

,tle oes:

ENDHEMBLOCK:

HEM BLOCK 1648,3;

slo goal;
" l0l0 ogle;

1010 0o01;

1010 0010;
160 ese

ENV.-BOK

ME LC 683

ENDMENBLOCK;

~.. RM BLOCK 1843, 10;

011 I1 0115;
0111 0111;
5111 1ogo;
011 I1 1001 ;
101 1 1010;
1011 1011;

ENDMENM_BLOCK;

END.

416

APPENDIX D: SCALD SCRIPT FILES

The script files used for the major simulations in the

thesis are included in this Appendix. Instructions 010, 101,

011, and Serial Transfer In From External Interstages are

shown on pages 163 - 169. The remaining script files are as

follows:

Instruction 101 ... pages 170 - 173

Instruction 000 ... pages 174 - 176

Instruction 110 & 111 ... pages 177 - 181

162

we' . " - " " - " , - " . % % "', % % % ",w % " %'. % "-. " " ." % " " '°J " . . "" , % % " ""

WAV 0 1001

14EMPATH (INSCON CONTROLLSIPff .27S291.89P ?4EM3P)
MEMLOAD promi .dat
MEMPATH (IN5CON CONTROLLER60P .27S291.88P MEM3P)
MEMLOAD prom2.dat
MEMPATH (INSCON CONTROLLER60P .27S291.87P MEM3P)
MEMLOAD prom3.dat
MEMPATH (IN5CON CONTROLLER60P .27S291.86P MEM3P)
MEMLOAD prom4.dat

-' LOADS EXTERNAL REGS FOR SERIAL TO B' & C'

PAUSE

OPEN ENCCHAN*
DEPOSIT 1
OPEN ENRCHAN*
DEPOSIT 1

OPEN SCCHAN(1..O>
DEPOSIT 3
OPEN SBCHAN<1..0)
DEPOSIT 3

OPEN EXTCIN
2OPEN EXTBIN

OPEN CCLKIN
OPEN BCLKIN

OPEN CCHAN<15. .0>
OPEN CCHAN<31. .16)
OPEN RCHAN<15. .0>
OPEN BCHAN(31. .16)
OPEN INC(31. .B)
DEPOSIT D9885ASA
OPEN INB<31. .0>
DEPOSIT DB8CA5

OPEN BUFC<31. .B)
DEPOSIT 00000000
OPEN BUFB<31. .0>
DEPOSIT 0050000O

OPEN INCLKC !C 70-90
OPEN INCIK8 !C 60-85

OPEN INCLKCON
DEPOSIT 0
OPEN INCLKBON
DEPOSIT 0

SI C

OPEN INCLKCON
DEPOSIT 1
OPEN INCLKBON
DEPOSIT 1
SI C

163

9z

OPEN BUFC(31. .B>
DEPOSIT FFFFFFFF
OPEN SUFB<31. .0>
DEPOSIT FFFFFFFF

OPEN SCCHAN<l. .0>
DEPOSIT 0
OPEN SBCHAN1. .0>
DEPOSIT 0

SI C

OPEN ENCCHAN*
* DEPOSIT 0

OPEN ENBCHAN*
* DEPOSIT 0

SI C

SI C

OPEN INCLKCON
DEPOSIT 0
OPEN INCLI(BON
DEPOSIT 0

OPEN RESET*
DEPOSIT 0
sI 500

pause

OPEN ENCCHAN*
REMOVE
OPEN ENBCHAN*
REMOVE
OPEN SCCHAN<1. .0>
REMOVE
OPEN SBCHAN(1..Z>
REMOVE

REMOVE
OPEN EXTCIN

REMOVE
OPEN CCLKIN
REMOVE
OPEN BCLKIN
REMOVE
OPEN CCHAN<15. .Z>
REMOVE
OPEN CCHAN<31. .16>
REMOVE
OPEN BCHAN<31. .16>
REMOVE
OPEN BCHAN<15. .Z>
REMOVE
OPEN INC<31. .U)
REMOVE
OPEN INB<31..Z>
REMOVE
OPEN BUFC(31..Z)
REMOVE
OPEN BUFB(31..Z>

164

REMOVE
OPEN INCLKC IC 70-99
REMOVE
OPEN INCLKB IC 60-85, *~REMOVE

OPEN INCLKCON
REMOVEp ~.OPEN INCLKBON
REMOVE
OPEN RESET*
REMOVE

INSTRUCTION 2 LOAD WDT

PAUSE

OPEN BI
OPEN SLVTOCrUSPC*
OPEN CLRSLONREG*
OPEN Z<15..0>
OPEN Z<31..16>
OPEN ADD<l..0)
OPEN ADD<6..4>
OPEN LDWDTREG
OPEN LDWDT*
OPEN WDTCOUNT<15..5>
OPEN MID(l5..>
OPEN WDTSTOP
OPEN WDTCOUNT<15>
OPEN INBUS<15..0>
OPEN INBUS<31..16>
OPEN ENBUSLO<I..0>
OPEN ENBUSHI<I..0)
OPEN MBUSHI<15..B>

OPEN BUFCON(IS..5)
DEPOSIT 0080

OPEN SPC*
DEPOSIT 1

OPEN ST<3..0>
DEPOSIT a

OPEN BUS<15..0>
DEPOSIT FFFF

OPEN CLK

s 1S0
OPEN RESET*
DEPOSIT 1
S! 170

OPEN ST<3..0>
DEPOSIT f
sl IRS

OPEN SPC*
DEPOSIl p

OPEN BUS<15..o>
DEPOSIT 2316

165

'a~~~~J ?'- %I.*%*\
-~. aa' %~~~

OPEN ST<3'..0>
DEPOSIT D
OPEN SPC*
DEPOSIT 1

SI

OPEN BUS<15..O>
DEPOSIT 9316

OPEN SPC*
DEPOSIT 0
sl 120

OPEN SPC*
DEPOSIT I
st 1o0

OPEN SPC*
DEPOSIT O
OPEN BUS<15. .3)
DEPOSIT 7FCZ
sI 100

OPEN SPC*
DEPOSIT 1
s, 1ag

OPEN SPC*
DEPOSIT 0
OPEN BUS<15. H>
DEPOSIT FFFF

OPEN SPC*
DEPOSIT 1
OPEN ST(3..B)
DEPOSIT 0
OPEN BUFCON<15..3)
DEPOSIT FFFF

slIg10
Sl 200

STARTS SERIAL TRANSFER TO PRIME

PAUSE

OPEN INCLKCON
DEPOSI I
OPEN INCLKBON
DEPOSIT I
OPEN SCCHAN<1..Z>
DEPOSIT 2
OPEN SBCHAN<I...>
DEPOSIT 2

INSTRUCTION 5 LOAD A REG

PAUSE

166

I.

PAUSE

OPEN .UFCON<15..B>
DEPOSIT 000

OPEN SPC*
DEPOSIT 0

OPEN ST<3..B>
DEPOSIT f

silog

OPEN SPC*
DEPOSIT f
OPEN BUS<IS..B>
DEPOSIT 2316

st log

OPEN ST<3..>
DEPOSIT D
OPEN SPC)
DEPOSIT I

s31log
OPEN BUS<15..z>

DEPOSIT AA16

OPEN SPC*
DEPOSIT A

OPEN SPC*DEPOSIT 0
OPEN ST<3..Z>

DEPOSIT 9

st log

OPEN BUS<IS..>
DEPOSIT 9ASAsI log

OPEN ST<3.. >
DEPOSIT 5
s lo

OPEN BUS<...>
DEPOSIT IAA
si 200

OPEN SPC*
DEPOSIT 091 20g

OPEN SPC*
DEPOSIT 1

~s! 280OPEN SUFCON<15..f

DEPOSIT FFFF

F 167

OPEN ENA*
DEPOSIT 0
si 200

OPEN BUFCON<15. .1)
DEPOSIT 0000
OPEN ENA*
DEPOSIT 1

SI 420
PAUSE

OPEN INCLKCON
DEPOSIT 0
OPEN INCLKBON
DEPOSIT 0
OPEN SCCHAN<1..N>
DEPOSIT 0
OPEN SBCHAN<l..0)
DEPOSIT 0

SI 300

INSTRUCTION 3 VOTE

PAUSE

OPEN VOTERIN<2. .0)
OPEN VOTEROUT<Z. .0>
OPEN PS<3. .B)
OPEN NS<3. .0)
OPEN GENCOUNT<7. .0>
OPEN STOPGENCNT
OPEN LDGENTIMER*

OPEN ST<3. .0>
DEPOSIT f
s I IoB.

OPEN SPC*
DEPOSIT 0

OPEN BUS(15. .Z)
DEPOSIT 2316
sI 100

OPEN ST<3. .0)
DEPOSIT D
OPEN SPC*
DEPOSIT I
sI 10.0

4, OPEN BUS<15. .0>
DEPOSIT 9816

OPEN SPC*
DEPOSIT 0
si 100

OPEN SPC*
DEPOSIT I
sl 100

168

* OPEN SPC*
DEPOSIT 8
OPEN BUS(15. .Z>
DEPOSIT 7FC8
st 100

OPEN SPC*
DEPOSIT I
st l0g

OPEN SPC*
DEPOSIT 5
OPEN BUS<15. .0>
DEPOSIT FFFF
st lag0

OPEN SPC*
DEPOSIT 1
OPEN ST<3. .0)
DEPOSIT 0
OPEN BUFCON<15..I)
DEPOSIT FFFF
si 100
5! 290

169

0.9 1 4,S %V".~~~S> P..? ''~~

his 15050f
way a 1000f

OPEN 61
OPEN SLVTOCPUSPC*
OPEN ENA*
OPEN ENBUSLO<1. .1)
OPEN ENBUSHI(1..O>
OPEN CLRSLONREG*

OPEN BUFCON(15. .0)
DEPOSIT 0000

4 OPEN SALO(1. .0)
OPEN SAHI(1. .0)
OPEN BUFSSR*
OPEN MBUSHI15..0>
OPEN INBUS<15. .0)
OPEN INBUS<31. .16)
OPEN Z(15. .0)
OPEN Z<31. .16>

OPEN ADD<10. .0)
OPEN ADD<6. .4>

OPEN SUFCON<15. .0)
DEPOSIT 0000

OPEN SPC*
DEPOSIT 1

OPEN ST<3. .0)
DEPOSIT 0

OPEN BUS<15. .B>\I
DEPOSIT ffff

OPEN RESET*
DEPOSIT 0

OPEN PHII 1C 0-40

MEMPATH (IN5COI CONTROLLER60P .27S291.89P MEM3P)
MEMLOAD promi .dat
MEMPATH (IN5CON CONTROLLERGHP .27S291.88P MEM3P)
MEMLOAD prom2.dat
MEMPATH (INSCON CONTROLLER68P .27S291.87P MEM3P)
MEMLOAD prom3.dat
MEMPATH (IN5CON CONTROLLER60P .27S291.86P MEM3P)
MEMLOAD prom4.dat

PAUSE

Sf150

OPEN RESET*
DEPOSIT I
si 170f

OPEN ST<3. .0)
DEPOSIT f
st 100

OPEN SPC*

170J

DEPOSIT 8

OPEN BUS(15. .5>
DEPOSIT 2316
st 1o3

OPEN ST(3. .3>
DEPOSIT D
OPEN SPC*
DEPOSIT I
31 103

OPEN BUS<16. .5>
DEPOSIT AA16

OPEN SPC*
DEPOSIT 1
sf 103

OPEN SPC*
DEPOSIT 1
OPEN ST<3. .3)
DEPOSIT 9
stIg11

OPEN BUS<15. .3)
DEPOSIT 139F
31 log

OPEN ST<3. .3>
DEPOSIT 5
31 Igo

OPEN BUS(15. .3>
DEPOSIT A8CD
sf 233

j. OPEN SPC*
% DEPOSIT 0

OPEN BUS<15. .3)
DEPOSIT 3333
31 log

OPEN SPC*
DEPOSIT 1

st 283

OPEN BLIFCON(15. .3)
DEPOSIT FFFF
OPEN ENA*
DEPOSIT 0
SI log
DEPOSIT I
51 1og

OPEN SAHI<1. .1)f
remove
OPEN SALO<1. .0)

* remove
9 1 2q08

INSTRUCTION 4 LOAD A TO CPU

171

.% ..\ ~~Z-~~ C~ ~**~ *S

OPEN MBUSHI<15. .0)

OPEN BUFCON<15. .0>
DEPOSIT 0000

OPEN SPC*
DEPOSIT 1

OPEN ST<3. .0)
DEPOSIT 0

OPEN BUS<1S. .Z)\I
DEPOSIT ffff

st 150

sf 170

OPEN ST<3. .0)
DEPOSIT f
siIs10

OPEN SPC*
DEPOSIT 0

OPEN BUS<15. .0)
DEPOSIT 2316
st 100

OPEN ST(3. .0>
DEPOSIT D
OPEN SPC*
DEPOSIT I
st log

OPEN BUS(15. .0)
DEPOSIT A206

OPEN SPC*
DEPOSIT 0
sl 1.0

OPEN SPC*
DEPOSIT 1
OPEN ST(3. .0)
DEPOSIT 9
OPEN BUFCON(15. .0>
DEPOSIT FFFF
SI log

OPEN BUS<15. .0)
DEPOSIT B888

sfIg10

OPEN ST<3. .0)
£1) DEPOSIT 0

si 100

OPEN BL'S(15. .0>
DEPOSIT CCCC

1.72

st' 200

OPEN SPC*
DEPOSIT a
st 133

OPEN SPC*
DEPOSIT 1
st 683
st 50

173

his 1053
way 5 1555

OPEN INBUS<15. .5)
OPEN INBUS<31. .16>
OPEN 81
OPEN SLVTOCPUSPC*
OPEN CLRSLONREGA
OPEN ENC*
OPEN ENE*

.4OPEN ENA*
OPEN ENSUSLO<1..5>
OPEN ENSUSHI<1. .5>
OPEN SC<1..5)
OPEN S8(1. .B>
OPEN SALO<1. .0)
OPEN SAHI<1. .5>
OPEN CLK
OPEN Z<15. .0>
OPEN Z<31..16>

OPEN MBUSHri(. .0>

OPEN BUFCON<15. .0>
DEPOSIT 000
OPEN BUS(15. .Z)\I
DEPOSIT ffff

OPEN ADD<10. .0)
OPEN ADD<6. .4>

OPEN SPC*
DEPOSIT 1

OPEN ST(3. .5>
DEPOSIT 5

OPEN RESET*
DEPOSIT 5

MEMPATH (INSCON CONTROLLER60P .27S291.89P MEM3P)
MEMLOAD promi .dat
MEMPATH (IN5CON CONTROLLER68P .27S291.88P #4EM3P)
MEMLOAD promZ.dat
MEMPATH (IN5CON CONTROLLER68P .27S291.87P MEM3P)
MEMLOAD Proff3-dat
MEI4PATH CINSCON CONTROLLER60P .27S291.86P MEM3P)
MEMLOAD prom4.dat

Sf 150

OPEN RESET*
DEPOSIT I
si 170

OPEN SV3. .5)
DEPOSIT f
si 100

OPEN SPC*
DEPOSIT 5

1.74

OPEN BUSlS..0)

DEPOSIT 2316
51 log

OPEN'ST<3..o)
DEPOSIT D
OPEN SPC*
DEPOSIT 1

OPEN BUS(15. .0>
'~ ~.DEPOSIT AA16

OPEN SPC*
DEPOSIT 0
s Igo0

OPEN SPC*
DEPOSIT 1
OPEN ST<3. .Z)
DEPOSIT 9
51 100

OPEN BUS<15. .0)
DEPOSIT 4567
si 100

OPEN ST<3. .0>
DEPOSIT 0
st 1o0

OPEN 8US<15. .0)
DEPOSIT Z123

sf 200

OPEN BUS
R EMOVE

OPEN BUFCON
REMOVE

OPEN MBUSHI
REMOVE

OPEN ENBUSHI
REMOVE

OPEN ENBUSLO
REMOVE

PAUSE

OPEN ENA*
DEPOSIT 0
S I ify0
OPEN ENA*
DEPOSIT I

OPEN Spc.
DEPOSIT I

1.75

OPEN ST<3..5>
DEPOSIT f
st l0

OPEN SPC*
DEPOSIT 0

OPEN BUS<15..5)

DEPOSIT 2316

sf 10g

OPEN ST<3..5)
DEPOSIT D

OPEN SPC*DEPOSIT I

OPEN BUS<15..5>DEPOSIT 8216

OPEN SPC*

DEPOSIT 5
st log

OPEN SPC*DEPOSIT I

OPEN ST(3..5)
'I DEPOSIT 9
-= sf 100

OPEN BUS<15..5>
DEPOSIT 139F

si IgB

OPEN ST<3..5>

DEPOSIT 0
si 190

OPEN BLI<15.. .0>
DEPOSIT ABCD

st 20

OPEN SPC*

DEPOSIT 0

OPEN ENB
DEPOSIT 0
sf 100

OPEN SPC*
DEPOSIT I

OPEN ENB*:, DEPOSIT I

P OPEN ENC*
5DEPOSIT g

SI Iog
DEPOSIT I
SI C

1.76

*%

way 0 1o55

OPEN INRUS(15. .6)
OPEN INBUS<31. .16>
OPEN 81
OPEN SLVTOCPUSPC*
OPEN CLRSLONREG*
OPEN ENC*
DEPOSIT I
OPEN ENB*
DEPOSIT 1
OPEN ENA*
DEPOSIT 1
OPEN ENBUSLO(1. .0)
DEPOSIT 0
OPEN ENBUSHI1. .0')
DEPOSIT 0
OPEN SC(l..0)
OPEN S8(1. .Z>
OPEN SALO<1. .0)
OPEN SAHI<1..O>
OPEN CLK
OPEN Z<15. .5>
OPEN Z<31. .16>

OPEN MBUSHI<1S. .0>

OPEN B'4FCON<l5. .0)
DEPOSIT 0005
OPEN .BUS<15. .B>\I
DEPOSIT face

OPEN ADO(1..5>
OPEN Ar)D<6. .4)

OPEN SPC*
DEPOSIT 1

OPEN ST(3. .0)
DEPOSIT 0

OPEN RESET*

DEPOSIT 0
MEMPATH (IN5CON CONTROLLER68P Z27S291.89P MEM3P)
MEMLOAD proml.dat
MEMPATH (IN5CON CONTROL.LER68P .27S291.88P MEM3P)
MEMLOAD promZ.dat
MEMPATH (IN5CON CONTROLLER60P .27S291.87P MEM3P)
MEMLDAV prom3.dat
MEMPATH (IN5CON CONTROLLER69P Z27S291.BGP MEM3P)
MEMLOAD prom4.dat

open enpb*
depotmit I
open enpc*
deposit I
P3U3e
21 130
si c

1.77

open enbuslo
deposit
open enbushi
deposit 0
s 100
resume
open sb
deposit 3
si 200
open bus
deposit cafe
open sb
deposit 2
open sc
deposit 3
sl 200

deposit 0
open bus
deposit ffff
open enbushi
deposit 2
open enbuslo
deposit 2
open enpb*
remove

open enpc*
remove

pause
open phil !c a-4g
open. elk
remove

open enbuslo
remove

open enbushi
remove

open mbushi
remove

open lnbus(15..B>
remove

open Inbus
open inbus<31..16)
remove

resume

si1 200

open enb*
deposit 0~sf lig.

deposit I
open enc*
deposit 0
si 10
deposit 1

178

PAUSE
deposit 0
deposit 1
s 1 200
deposit 0
5 1 209
deposit 1
open enb*
deposit 0
st 200
deposit I
si 70
resume

si 150

OPEN RESET*
DEPOSIT I
sl 170

INSTRUCTION 6, C TO A

OPEN ST<3..0>
DEPOSIT f
si lg

OPEN SPC*
DEPOSIT 0

OPEN BUS<15..0>
DEPOSIT 2316Si 100

OPEN ST<3..0>

DEPOSIT D
OPEN SPC*
DEPOSIT I
si lg

OPEN BUS<15..0>
DEPOSIT f321

OPEN SPC*
DEPOSIT 0
s 1g

OPEN SPC*
DEPOSIT 1
OPEN ST<3 .0>
DEPOSIT 9

OPEN BUS<15..0>

DEPOSIT 1111
SI 100

OPEN ST<3..0>
DEPOSIT 0

179

31 10or

OPEN BUS(15. .o)
DEPOSIT 2222

OPEN ST<3. .0)
DEPOSIT 1
SI 1og

SI &no

pause
open ena*
dep

a
si 200
deposit 1
si c
resume

INSTRUCTION 7, B TO A

OPEN ST(3. .5)
DEPOSIT f
SI log

OPEN SPC*

DEPOSIT 0

OPEN BUS(15. .0)
DEPOSIT 2316
Si 100

OPEN ST(3. .0)
DEPOSIT D
OPEN SPC*
DEPOSIT 1

* S1 1og

OPEN BUS<15. .0)
DEPOSIT 3bad

OPEN SPC*
DEPOSIT 0
Si 10g

* OPEN SPC*
DEPOSIT 1
OPEN S1<3. .B>
DEPOSIT 9

OPEN BUS<1S. .0)
DEPOSIT 3333

OPEN ST<3. .0>
DEPOSIT 0
si 100

OPEN BUS<15. .0)
* DEPOSIT 4444

L30

OPEN ST<3..0>
DEPOSIT 1
SI 108

SI 400

open ena*
deposit o
sI 2.00
deposit I
st Iuo
plot 1300 5120 tn67plot.dat

4

~L8

.N

tA 1

LIST OF REFERENCES

1. Szelar, Ken J., and others, Digital Fly a Wire Flight
Control Validation Experience, NASA Technical Manual
72860, Dec 78.

2. Abbott, Larry W., Operational Characteristics of the
Dispersed Sensor Processor Mesh, IEEE/AIAA 5th Digital
Avionics Systems Conference, Seattle, WA, Oct 31 -
Nov 3 1983.

3. Abbott, Larry W., Test Experience on an Ultrareliable
Computer Communication Network, IEEE/AIAA 6th Digital
Avionics Systems Conference, Baltimore, MA, Dec 3-6
1984.

4. Abbott, Larry W., A Synergistic Fault Tolerant Computer
Design for an N-Version Programming Element, Naval
Postgraduate School, Monterey, CA, Nov 1984.

5. Siewiorek, Daniel P., and McCluskey, Edward J., "An
Iterative Cell Switch Design for Hybrid Redundancy",
IEEE Transactions on Computers, Vol. C-22, No. 3,
March, 1973

6. Smith, T. Basil, Fault Tolerant Processor Concepts and
Operation, CSDL-P-1727, Charles Stark Draper Laboratory
Cambridge, Massachusetts, May 1, 1983.

7. Series 3 20 0 0 TM National Semiconductor Corporation,
Databook, Santa Clara, CA, 1984.

8. Mano, M. M., Digital Logic and Computer Design, pp.
102 - 112, Prentice-Hall, Inc., 1979.

9. Draft 8.0 of IEEE Task P754, "A Proposed Standard for
Binary Floating Point Arithmetic", IEEE Computer, March
1981.

10. Fletcher, William I., An Engineering Approach to
Digital Design, pp. 743-760, Prentice-Hall, Inc., 1980.

11. Fairchild TTL Databook, Fairchild Camera & Instrument
Company, Mountainview, CA, 1978

12. Fairchild FAST Databook, Fairchild Camera & Instrument
Company, South Portland, Maine, 1982

182

"el

BIBLIOGRAPHY

13th Annual International Symposium on Fault Tolerant
Computing: Digest of Papers, IEEE Computer Society,
June 28-30, 1983, Milano, Italy.

14th Annual International Symposium on Fault Tolerant
Computing: Digest of Papers, IEEE Computer Society,
June 20-22, 1984, Kissimmee, Florida.

183

INITIAL DISTRIBUTION LIST

No. Copies

1. Library, Code 0142 2
Naval Postgraduate School
Monterey, California 93943-5002

2. Chairman, Department of Electrical and 2
Computer Engineering (Code 62)

Naval Postgraduate School
Monterey, California 93943-5000

3. Professor Larry Abbott, Code 62At 8
Department of Electrical and
Computer Engineering
Naval Postgraduate School
Monterey, California 93943-5000

4. Captain William J. Luk, USA I
5313 Montclair Drive
Raleigh, North Carolina 27609

5. Captain Virgil K. Spurlock, USA 5
1037 Garvin Place
Louisville, Kentucky 40203

6. Defense Technical Information Center 2
Cameron Station
Alexandria, Virginia 22304-6145

184

ec, -VM

